Welcome to the Max Planck Institute for Dynamics and Self-Organization

Welcome to the Max Planck Institute for Dynamics and Self-Organization

What we want
No matter how well we understand how a single droplet of water is formed in the laboratory, we cannot predict how countless droplets form clouds that substantially affect the Earth’s climate. And although we can accurately characterize a single neuron’s impulse, we do not yet understand how billions of them form a single thought. In such systems, animate or inanimate, processes of self-organization are at work: Many interacting parts organize themselves independently, without external control, into a complex whole. At our institute we explore the mechanisms underlying these processes in order to gain a detailed understanding of complex systems. Also the major challenges of the 21st century, from climate change and economic crises to problems in energy supply and transport, are closely linked to these scientific questions. Without a deep understanding of dynamics and self-organization in complex and highly networked systems we cannot face these challenges. With our basic research not only do we want to deepen our understanding of nature, but also want to contribute to a sustainable existence on this planet.

News


Escaping from traps

Escaping from traps

July 25, 2024
How molecular interactions make it possible to overcome the energy barrier
When bacteria are buckling

When bacteria are buckling

June 14, 2024
Filamentous cyanobacteria buckle at a certain length when they encounter an obstacle. This was discovered by the research group of Stefan Karpitschka, group leader at the Max Planck Institute for Dynamics and Self-Organization and professor at the University of Konstanz. The results provide an important basis for the use of cyanobacteria in modern biotechnology.
Flying “SMARTIES” explore the sky and make predictions more precise

Flying “SMARTIES” explore the sky and make predictions more precise

June 05, 2024
In the “SMARTIES” (SMART Integrated Electronic Sensors for quantifying atmospheric transport and mixing) research project, the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) and the Fraunhofer Institute for Integrated Circuits IIS are developing and testing a system of intelligent mini-balloons with atmospheric tracers – called SMARTIES. 

Research Departments

Fluid Physics, Pattern Formation and Biocomplexity

Prof. Dr. Dr. h.c. Eberhard Bodenschatz

We are investigating the dynamics of a variety of complex nonlinear systems both experimentally and theoretically. Our interests are currently focused on biocomplexity in cell-biology, Lagrangian properties of fully developed turbulence, pattern formation and spatio-temporal chaos, and the Geodynamics of the earth's crust.

Living Matter Physics

Prof. Dr. Ramin Golestanian

The department of Living Matter Physics is engaged in a wide range of theoretical research aimed at a multi-scale understanding of the dynamics of living systems from a physical perspective. The aim is to understand the complex dynamics of living matter well enough to be able to make it from the bottom-up; i.e. from molecules to systems.

Max Planck Research Groups

Turbulence and Wind Energy
Dr. Claudia Brunner
Theory of Turbulent Convection
PD Dr. Olga Shishkina
BiomedicalPhysics
Prof. Dr. Stefan Luther
Dynamics of Biological Networks
Prof. Dr. Fred Wolf
Complex SystemsTheory
Prof. Dr. Viola Priesemann
Theory of Biological Fluids
Dr. David Zwicker

In a nutshell

Dates

LMP Seminar: Odd viscous flow at low Reynolds numbers

Dr. Ruben Lier
Sep 17, 2024 02:00 PM - 03:30 PM (Local Time Germany)
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Room: Riemannraum 1.40 & ZOOM Meeting ID: 997 1155 2453 Passcode: 771001

MPI-DS Colloquium: TBD

Prof. Dr. Natalia Berloff
Oct 23, 2024 02:15 PM - 03:15 PM (Local Time Germany)
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Room: Prandtl Lecture Hall and Zoom Meeting ID: 959 2774 3389 Passcode: 651129

MPI-DS Colloquium: TBD

Prof. Dr. Leticia Cugliandolo
Dec 4, 2024 02:15 PM - 03:15 PM (Local Time Germany)
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Room: Prandtl Lecture Hall and Zoom Meeting ID: 959 2774 3389 Passcode: 651129
Go to Editor View