Welcome to the Max Planck Institute for Dynamics and Self-Organization

Welcome to the Max Planck Institute for Dynamics and Self-Organization

What we want
No matter how well we understand how a single droplet of water is formed in the laboratory, we cannot predict how countless droplets form clouds that substantially affect the Earth’s climate. And although we can accurately characterize a single neuron’s impulse, we do not yet understand how billions of them form a single thought. In such systems, animate or inanimate, processes of self-organization are at work: Many interacting parts organize themselves independently, without external control, into a complex whole. At our institute we explore the mechanisms underlying these processes in order to gain a detailed understanding of complex systems. Also the major challenges of the 21st century, from climate change and economic crises to problems in energy supply and transport, are closely linked to these scientific questions. Without a deep understanding of dynamics and self-organization in complex and highly networked systems we cannot face these challenges. With our basic research not only do we want to deepen our understanding of nature, but also want to contribute to a sustainable existence on this planet.

News


How cells are ahead of the curve

How cells are ahead of the curve

March 18, 2024
The curvature of a surface determines the migration behavior of biological cells. They preferentially move along valleys or grooves while avoiding ridges. These findings with contribution from the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) and the Weizmann Institute of Science gave rise to a model predicting cellular behavior. Such universal principles now allow a better understanding of the migration of immune and cancer cells, paving the way for new treatment options.
Electronic music with a human rhythm

Electronic music with a human rhythm

February 05, 2024
New product called Human Plugins by Mixed In Key is based on Max Planck and Harvard research

Research Departments

Fluid Physics, Pattern Formation and Biocomplexity

Prof. Dr. Dr. h.c. Eberhard Bodenschatz

We are investigating the dynamics of a variety of complex nonlinear systems both experimentally and theoretically. Our interests are currently focused on biocomplexity in cell-biology, Lagrangian properties of fully developed turbulence, pattern formation and spatio-temporal chaos, and the Geodynamics of the earth's crust.

Living Matter Physics

Prof. Dr. Ramin Golestanian

The department of Living Matter Physics is engaged in a wide range of theoretical research aimed at a multi-scale understanding of the dynamics of living systems from a physical perspective. The aim is to understand the complex dynamics of living matter well enough to be able to make it from the bottom-up; i.e. from molecules to systems.

Max Planck Research Groups

Turbulence and Wind Energy
Dr. Claudia Brunner
BiomedicalPhysics
Prof. Dr. Stefan Luther
Complex Systems Theory
Prof. Dr. Viola Priesemann
Theory of Biological Fluids
Dr. David Zwicker

In a nutshell

Dates

LFPB Seminar: Preserving large-scale features in simulations of elastic turbulence

Dr. Sumithra Reddy Yerasi
Mar 21, 2024 02:15 PM - 03:15 PM (Local Time Germany)
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Room: Maria Goeppert Seminar room (0.79)

LMP Seminar: Bacteria in motion: from run-and-tumble dynamics to surface interactions

Dr. Christina Kurzthaler
Mar 26, 2024 02:00 PM - 03:30 PM (Local Time Germany)
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Room: Riemannraum 1.40 & ZOOM Meeting ID: 997 1155 2453 Passcode: 771001

MPI-DS Colloquium: TBD

Prof. Dr. Sriram Ramaswamy
Jun 19, 2024 02:15 PM - 03:15 PM (Local Time Germany)
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Room: Prandtl Lecture Hall and Zoom Meeting ID: 959 2774 3389 Passcode: 651129

MPI-DS Colloquium: TBD

Prof. Dr. Julien Tailleur
Jun 26, 2024 02:15 PM - 03:15 PM (Local Time Germany)
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Room: Prandtl Lecture Hall and Zoom Meeting ID: 959 2774 3389 Passcode: 651129

MPI-DS Colloquium: TBD

Prof. Dr. Natalia Berloff
Oct 23, 2024 02:15 PM - 03:15 PM (Local Time Germany)
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Room: Prandtl Lecture Hall and Zoom Meeting ID: 959 2774 3389 Passcode: 651129
Go to Editor View