Welcome to the Max Planck Institute for Dynamics and Self-Organization

Welcome to the Max Planck Institute for Dynamics and Self-Organization

What we want
No matter how well we understand how a single droplet of water is formed in the laboratory, we cannot predict how countless droplets form clouds that substantially affect the Earth’s climate. And although we can accurately characterize a single neuron’s impulse, we do not yet understand how billions of them form a single thought. In such systems, animate or inanimate, processes of self-organization are at work: Many interacting parts organize themselves independently, without external control, into a complex whole. At our institute we explore the mechanisms underlying these processes in order to gain a detailed understanding of complex systems. Also the major challenges of the 21st century, from climate change and economic crises to problems in energy supply and transport, are closely linked to these scientific questions. Without a deep understanding of dynamics and self-organization in complex and highly networked systems we cannot face these challenges. With our basic research not only do we want to deepen our understanding of nature, but also want to contribute to a sustainable existence on this planet.

News


New aspects of surface wetting revealed

New aspects of surface wetting revealed

November 15, 2022
When a surface is getting wet, also the composition of the liquid plays a role in the wetting process. Researchers from the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) found that phase separation within the wetting liquid directly affects the dynamics of spreading. Their findings may be important in various applications, including tissue engineering, biology and semiconductor manufacturing. The study was recently published in the scientific journal PNAS.
Sticking together without stickiness

Sticking together without stickiness

October 27, 2022
Enzymatic reactions create micro-environments which are essential to organize cellular processes

Research Departments


Fluid Physics, Pattern Formation and Biocomplexity(Prof. Dr. Dr. h.c. Eberhard Bodenschatz)

Fluid Physics, Pattern Formation and Biocomplexity
(Prof. Dr. Dr. h.c. Eberhard Bodenschatz)

We are investigating the dynamics of a variety of complex nonlinear systems both experimentally and theoretically. Our interests are currently focused on biocomplexity in cell-biology, Lagrangian properties of fully developed turbulence, pattern formation and spatio-temporal chaos, and the Geodynamics of the earth's crust.
Dynamics of Complex Fluids (Prof. Dr. Stephan Herminghaus)

Dynamics of Complex Fluids 
(Prof. Dr. Stephan Herminghaus)

A complex fluid consists of (a large number of) similar mobile entities which are complex enough by themselves to preclude a straightforward prediction of the collective behaviour of the whole. Our research aims at understanding emergent phenomena in complex fluids, in particular in active fluids. We hope to identify suitable model systems which yield insight into overarching principles of self-organization in systems as diverse as granular flows, swarming of plankton particles, or patterns in traffic flow. One challenging question is: are there general common ‘principles’ behind the various instances of symmetry breaking, structure formation, and emergence in open systems? How does nature proceed from ‘being’ to ‘becoming’?
Living Matter Physics(Prof. Dr. Ramin Golestanian)

Living Matter Physics
(Prof. Dr. Ramin Golestanian)

Since March 2018, Prof. Ramin Golestanian from Oxford University is a new director heading the department ‘Living Matter Physics’. The department is engaged in a wide range of theoretical research aimed at a multi-scale understanding of the dynamics of living systems from a physical perspective. 

Max Planck Research Groups

BiomedicalPhysics
Prof. Dr. Stefan Luther

Complex SystemsTheory
Dr. Viola Priesemann

Theory of BiologicalFluids
Dr. David Zwicker

In a nutshell

Dates

LMP Seminar: Self-regeneration of parts for bottom-up construction of synthetic cells

Dr. Nadanai Laohakunakorn
29.11.2022 14:00 - 15:30
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Room: Video conference at www.zoom.us Meeting ID: 997 1155 2453 Passcode: 771001

MPI-DS Colloquium: Modelling midlatitude cyclones across scales

Dr. Florian Pantillon
30.11.2022 14:15 - 15:15
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Room: Prandtl Lecture Hall and Zoom Meeting ID: 959 2774 3389 Passcode: 651129

MPI-DS Colloquium: Morphological transitions of flexible filaments transported in viscous flows

Prof. Dr. Anke Lindner
11.01.2023 14:15 - 15:15
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Room: Prandtl Lecture Hall and Zoom Meeting ID: 959 2774 3389 Passcode: 651129
Go to Editor View