What we want
No matter how well we understand how a single droplet of water is formed in the laboratory, we cannot predict how countless droplets form clouds that substantially affect the Earth’s climate. And although we can accurately characterize a single neuron’s impulse, we do not yet understand how billions of them form a single thought. In such systems, animate or inanimate, processes of self-organization are at work: Many interacting parts organize themselves independently, without external control, into a complex whole. At our institute we explore the mechanisms underlying these processes in order to gain a detailed understanding of complex systems. Also the major challenges of the 21st century, from climate change and economic crises to problems in energy supply and transport, are closely linked to these scientific questions. Without a deep understanding of dynamics and self-organization in complex and highly networked systems we cannot face these challenges. With our basic research not only do we want to deepen our understanding of nature, but also want to contribute to a sustainable existence on this planet.

Welcome to the Max Planck Institute for Dynamics and Self-Organization

What we want
No matter how well we understand how a single droplet of water is formed in the laboratory, we cannot predict how countless droplets form clouds that substantially affect the Earth’s climate. And although we can accurately characterize a single neuron’s impulse, we do not yet understand how billions of them form a single thought. In such systems, animate or inanimate, processes of self-organization are at work: Many interacting parts organize themselves independently, without external control, into a complex whole. At our institute we explore the mechanisms underlying these processes in order to gain a detailed understanding of complex systems. Also the major challenges of the 21st century, from climate change and economic crises to problems in energy supply and transport, are closely linked to these scientific questions. Without a deep understanding of dynamics and self-organization in complex and highly networked systems we cannot face these challenges. With our basic research not only do we want to deepen our understanding of nature, but also want to contribute to a sustainable existence on this planet.

News


Dragged along by micro-swimmers

August 24, 2021
Researchers from the Max Planck Institute for Dynamics and Self-Organization (MPIDS), the University of Pennsylvania and the University of Twente created a new model for a new transport mechanism on the microscale in a combined experimental and theoretical approach. They investigated small self-propelling objects, so-called micro-swimmers, and monitored a directed transport of particles in the surrounding fluid. Using this observation, they computed how a multitude of such swimmers can be able to induce a directed flow of material which could have an important impact on molecular transport mechanisms.

Cellular filaments keeping the pace

August 09, 2021
A new model describes the coordination of beating cilia allowing to predict their functional behavior. Researchers from the Max Planck Institute for Dynamics and Self-Organization (MPIDS) analyzed the formation of metachronal waves in arrays of cilia and how external cues might influence them. The model allows to better understand the crucial role that cilia play in many biological processes and lays the foundation for its manipulation. This may ultimately improve the corresponding medical diagnostics and treatments, but also helps in the design of artificial systems used in microscale engineering.

Research Departments


Fluid Physics, Pattern Formation and Biocomplexity
(Prof. Dr. Dr. h.c. Eberhard Bodenschatz)

We are investigating the dynamics of a variety of complex nonlinear systems both experimentally and theoretically. Our interests are currently focused on biocomplexity in cell-biology, Lagrangian properties of fully developed turbulence, pattern formation and spatio-temporal chaos, and the Geodynamics of the earth's crust.

Dynamics of Complex Fluids 
(Prof. Dr. Stephan Herminghaus)

A complex fluid consists of (a large number of) similar mobile entities which are complex enough by themselves to preclude a straightforward prediction of the collective behaviour of the whole. Our research aims at understanding emergent phenomena in complex fluids, in particular in active fluids. We hope to identify suitable model systems which yield insight into overarching principles of self-organization in systems as diverse as granular flows, swarming of plankton particles, or patterns in traffic flow. One challenging question is: are there general common ‘principles’ behind the various instances of symmetry breaking, structure formation, and emergence in open systems? How does nature proceed from ‘being’ to ‘becoming’?

Living Matter Physics
(Prof. Dr. Ramin Golestanian)

Since March 2018, Prof. Ramin Golestanian from Oxford University is a new director heading the department ‘Living Matter Physics’. The department is engaged in a wide range of theoretical research aimed at a multi-scale understanding of the dynamics of living systems from a physical perspective. 

Max Planck Research Groups

Neural Systems
Theory

Dr. Viola Priesemann

Biomedical
Physics

Prof. Dr. Stefan Luther

Statistical physics of
evolving systems

Dr. Armita Nourmohammad

Theory of Biological
Fluids

Dr. David Zwicker

In a nutshell

Dates

LMP Seminar: The proton motive force determines Escherichia coli’s robustness to extracellular pH

Prof. Dr. Teuta Pilizota
21.09.2021 14:00 - 15:30
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Room: Video conference at www.zoom.us Meeting ID: 997 1155 2453 Passcode: 771001

MPIDS Colloquium: tbd

Prof. Dr. Denis Bartolo
06.10.2021 14:15 - 15:15
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Room: Prandtl Lecture Hall

MPIDS Colloquium: Quantifying memory effects in random search processes

Prof. Dr. Raphaël Voituriez
07.10.2021 14:15 - 15:15
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Room: Video conference at www.zoom.us Meeting ID: 959 2774 3389 Passcode: 651129
Go to Editor View