Former Max Planck Research Groups at MPI-DS

Biological Physics and Morphogenesis (Prof. Dr. Karen Alim)
How can an organism grow to form a desired structure and pattern? Understanding the morphogenesis of an organism, the collective self-organization of cells that gives rise to a functional structure is at the heart of decoding life. We aim to identify the rules of development by studying the physical principles underlying the formation and adaption of biological organisms. Currently we investigate the mechanics of plant growth and the fluid dynamics enabling the slime mold Physarum polycephalum to adapt its network-like body to its environment.
Droplets, Membranes and Interfaces (Dr. Jean-Christophe Baret)
Studying the physics and physical chemistry of interfaces in multiphase flows has a practical relevance to understand the behaviour of foams (used for example in food technology...), emulsions (cosmetics, medicine, biotechnology,...) or membranes (material sciences, cell biology...). The focus of our group is the fundamental study of interfaces in liquid systems through the dynamics of droplets, bubbles and emulsions. Using microfluidic tools we produce controlled liquid structures and investigate the transient states in droplet formation, emulsification or coalescence and the influence of external fields on the dynamics of droplet interfaces. We also collaborate with biologists and biochemists on applications of droplet-based microfluidics to create new tools for the miniaturization of bio-chemical assays.
Biological Physics and Evolutionary Dynamics (Dr. Oskar Hallatschek)
How does evolution work? Although (since Darwin) the principles of biological evolution are known, we are unable to predict her course. Rapid biotechnological advances allow, however, a direct view onto the temporal changes in the genome. The Max Planck Research Group develops theoretical models of evolutionary dynamics at the molecular level that are tested with genetic data or in experiments. Partially related biophysical projects deal with the mechanics of growing tissues.
Complex Dynamics and Turbulence (Dr. Björn Hof)
The Max Planck Research Group concerns itself with the origin of complex dynamical behavior in nonlinear systems. Main focus is the transition in shear flows from laminar to turbulent. Here new methods from nonlinear dynamics are applied to gain a deeper understanding of these processes. Further projects deal with elastic turbulence, the reduction of flow resistance in polymer solutions and phase transitions in granular materials.
Physics of Biological Organization (Dr. Eleni Katifori)
What are the organizing principles of biological matter? The Max Planck Research Group is trying to understand the physics behind the morphological and functional attributes of living organisms. Our main focus is on understanding biological distribution systems. We use ideas from physics, mathematics and computer science to decipher the complexity of vascular webs and understand their evolution and function. In other biologically inspired projects, we investigate how structures with intricate geometries fold, and we explore questions related to thin shell elasticity and mechanics.
Statistical physics of evolving systems (Dr. Armita Nourmohammad)
Darwinian evolution is an act of information processing: populations sense and measure the state of their environment and adapt by changing their configurations accordingly. Changes of the environment result in an irreversible out-of-equilibrium adaptive evolution, with a constant flow of information.  Our goal is to understand the biological limits of information processing in evolving populations. We study a wide range of biological systems, including rapid evolution of viruses such as HIV, somatic evolution of cellular populations in the adaptive immune system of vertebrates, and adaptive evolution of gene regulation. Although distinct in many of their biological characteristics, we aim to identify common features in their biophysical principles, and ultimately to devise a common framework for a predictive description their evolutionary dynamics.
Emergent Complexity in Physical Systems (Dr. Tobias Schneider)
We are interested in how seemingly simple physical systems create unexpectedly complex patterns and dynamical behaviour. Examples are complex laminar turbulent patterns in shear flows, the formation of intricate coral like solids when crystals grow in solution, patterns in actively forced Navier-Stokes which models biological systems, the role of elasticity in micro-swimmers as well as free-surface flows in microfluidic applications. We study these systems using several aspects of continuum mechanics and transport theory entwinded with dynamical systems methods and large computer simulations.
Network Dynamics (Prof. Dr. Marc Timme)
The members of the Max Planck Research Group deal with the structure and dynamics of complex networks. A main focus of their work is the analysis and the mathematical modelling of the activity in neural networks in the brain. In oder to do this, the scientists develop the necessary mathematical tools. Apart from that, they study applications relevant for computer science, statistical physics, robotics, and artificial neural networks.
Turbulence, Complex Flows & Active Matter (Prof. Dr. Michael Wilczek)
Despite its omnipresence and relevance in nature and engineering, a comprehensive understanding of turbulent flows remains elusive. From the viewpoint of theoretical physics fully developed turbulence constitutes a paradigm of a complex system with a large number of strongly interacting degrees of freedom far from equilibrium. The aim of the research group is to contribute to our understanding of turbulent flows by means of statistical theories, modeling, and numerical simulations. Besides studying fundamental aspects of turbulent flows, we furthermore strive for the transfer of most recent theoretical concepts to applied problems such as atmospheric turbulence and wind energy conversion. more
Go to Editor View