Was wir wollen
So genau man auch verstehen mag, wie im Labor ein einzelner Wassertropfen entsteht, so kann man doch nicht vorhersagen, wie unzählige Tropfen in der Atmosphäre Wolken bilden und das Klima der Erde entscheidend beeinflussen; und so genau man einen Nervenimpuls auch vermessen mag, so versteht man noch nicht, wie Milliarden von ihnen einen Gedanken formen. In solchen Systemen, ob belebt oder unbelebt, sind physikalische Prozesse der Selbstorganisation am Werk: Viele miteinander wechselwirkende Teile organisieren sich selbstständig - ohne äußere Steuerung - zu einem komplexen Ganzen. An unserem Institut erforschen wir die grundlegenden Mechanismen dieses Zusammenwirkens, um ein detailliertes Verständnis komplexer Systeme zu erlangen. Auch die großen Herausforderungen des 21. Jahrhunderts, von Klimawandel und ökonomischen Krisen bis hin zu Problemen in Energieversorgung und Verkehr, sind eng mit diesen wissenschaftlichen Fragestellungen verknüpft. Ohne ein tiefes Verständnis der Dynamik und Selbstorganisation in komplexen und hochvernetzten Systemen sind sie nicht zu bewältigen. Mit unserer Grundlagenforschung wollen wir also nicht nur das Verständnis der Natur vertiefen, sondern auch zu einem nachhaltigen Leben auf unserem Planeten beitragen.

Willkommen am Max-Planck-Institut für Dynamik und Selbstorganisation

Was wir wollen
So genau man auch verstehen mag, wie im Labor ein einzelner Wassertropfen entsteht, so kann man doch nicht vorhersagen, wie unzählige Tropfen in der Atmosphäre Wolken bilden und das Klima der Erde entscheidend beeinflussen; und so genau man einen Nervenimpuls auch vermessen mag, so versteht man noch nicht, wie Milliarden von ihnen einen Gedanken formen. In solchen Systemen, ob belebt oder unbelebt, sind physikalische Prozesse der Selbstorganisation am Werk: Viele miteinander wechselwirkende Teile organisieren sich selbstständig - ohne äußere Steuerung - zu einem komplexen Ganzen. An unserem Institut erforschen wir die grundlegenden Mechanismen dieses Zusammenwirkens, um ein detailliertes Verständnis komplexer Systeme zu erlangen. Auch die großen Herausforderungen des 21. Jahrhunderts, von Klimawandel und ökonomischen Krisen bis hin zu Problemen in Energieversorgung und Verkehr, sind eng mit diesen wissenschaftlichen Fragestellungen verknüpft. Ohne ein tiefes Verständnis der Dynamik und Selbstorganisation in komplexen und hochvernetzten Systemen sind sie nicht zu bewältigen. Mit unserer Grundlagenforschung wollen wir also nicht nur das Verständnis der Natur vertiefen, sondern auch zu einem nachhaltigen Leben auf unserem Planeten beitragen.

Aktuelles


Mitgezogen von Mikro-Schwimmern

24. August 2021
Forschende des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS), der University of Pennsylvania und der Universität Twente haben in einem kombinierten experimentellen und theoretischen Ansatz ein neues Modell für einen neuen Transportmechanismus auf der Mikroskala geschaffen. Sie untersuchten kleine selbstangetriebene Objekte, sogenannte Mikroschwimmer, und beobachteten einen gerichteten Transport von Partikeln in der umgebenden Flüssigkeit. Anhand dieser Beobachtung berechneten sie, wie eine Vielzahl solcher Schwimmer einen gerichteten Materialfluss auslösen kann. Dies könnte einen bedeutenden Einfluss auf molekulare Transportmechanismen haben.

Zelluläre Filamente im Takt

9. August 2021
Ein neues Modell beschreibt die Koordination schlagender Flimmerhärchen und erlaubt es ihr funktionelles Verhalten vorherzusagen. Forscher des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) untersuchten die Bildung metachronischer Wellen in Gruppierungen von Zilien und die Auswirkungen von äußeren Einflüssen auf diese. Das Modell ermöglicht ein besseres Verständnis der fundamentalen Rolle, die Zilien in vielen biologischen Prozessen spielen und legt den Grundstein, um sie zu modifizieren. Auf der einen Seite könnte dies die entsprechenden medizinischen Diagnosen und Behandlungen verbessern, auf der anderen Seite auch bei der Entwicklung künstlicher Systeme im Bereich der Mikrotechnik helfen.

Forschungsabteilungen


Fluidphysik, Strukturbildung und Biokomplexität
(Prof. Dr. Dr. h.c. Eberhard Bodenschatz)

Wir untersuchen die Dynamik komplexer nichtlinearer Systeme experimentell und theoretisch. Unsere Interessen sind zur Zeit ausgerichtet auf Biokomplexität in der Zellbiologie, hydrodynamische Turbulenz (insbesondere Lagrangesche Eigenschaften von Turbulenz), Strukturbildung und raum-zeitliches Chaos, sowie Geodynamik der Erdkruste.

Dynamik komplexer Fluide
(Prof. Dr. Stephan Herminghaus)

Zu der großen Stoffklasse der sogenannten komplexen Fluide gehören Emulsionen und Granulate ebenso wie die sog. aktiven Fluide, deren Partikel ein Eigenleben haben: Planktonschwärme, biologische Fluide, oder sogar der strömende Straßenverkehr. Bei unserer Forschung an diesen Systemen geht es stets um die Frage, welche qualitativ neuen Phänomene entstehen, wenn viele gleichartige Elemente bzw. Subsysteme (die Körner eines Granulats, die aktive schwimmenden Planktonpartikel oder die einzelnen Verkehrsteilnehmer) in innige Wechselwirkung miteinander treten. Die daraus resultierenden (sog. emergenten) Phänomene sind enorm vielfältig und führen neben Entwicklungen mit hohem Anwendungspotential auch direkt zu Grundfragen der Strukturentstehung: wie kommt die Natur vom Sein zum Werden?

Physik lebender Materie
(Prof. Dr. Ramin Golestanian)

Die Abteilung „Physik lebender Materie“ widmet sich einer Bandbreite von theoretischen Forschungsfeldern, die das skalenübergreifende Verständnis der Dynamik von lebenden Systemen aus physikalischer Sicht anstreben.

Max-Planck-Forschungsgruppen

Theorie neuronaler
Systeme

Dr. Viola Priesemann

Auf einen Blick

Termine

LMP Seminar: The proton motive force determines Escherichia coli’s robustness to extracellular pH

Prof. Dr. Teuta Pilizota
21.09.2021 14:00 - 15:30
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Raum: Video conference at www.zoom.us Meeting ID: 997 1155 2453 Passcode: 771001

MPIDS Colloquium: tbd

Prof. Dr. Denis Bartolo
06.10.2021 14:15 - 15:15
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Raum: Prandtl Lecture Hall

MPIDS Colloquium: Quantifying memory effects in random search processes

Prof. Dr. Raphaël Voituriez
07.10.2021 14:15 - 15:15
Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), Raum: Video conference at www.zoom.us Meeting ID: 959 2774 3389 Passcode: 651129
Zur Redakteursansicht