Internally heated convection

Deutsche Forschungsgemeinschaft (DFG), 2022 to 2026

Thermally driven turbulent flows are omnipresent in nature and technology. They occur due to specific thermal conditions set at the boundaries of a convection cell and/or due to internal sources of heat inside the cell. In this project, we will study turbulent thermal convection with this latter form of driving – namely, driving by internal heating, both for the classical case with constant driving and for spatially and temporally modulated driving, which is closer to many applications of internally heated turbulence. Our combined theoretical and numerical study will be based on two- and three-dimensional direct numerical simulations, which will be conducted in a broad range of control parameters: up to five decades in Prandtl number, up to six decades in Rayleigh–Roberts number, and up to four decades in the thermal modulation frequency. First, for constant thermal driving, with the direct numerical simulations, we want to verify (or falsify) our recent unifying scaling theory (Wang, Lohse, Shishkina, Geophys. Res. Lett., 2021, DOI: 10.1029/2020GL091198) for the momentum transport (Reynolds number) and bulk temperature in internally heated convection. We will then extend the scaling theory to also predict the heat transport through the upper and lower surfaces of the fluid layer, i.e. the corresponding Nusselt numbers, which are different in internally heated convection. We will also reveal the connection between the global flow response parameters with the local flow organization. In particular, we want to understand the vertical mean profiles of the velocity and of the temperature from the extended boundary layer equations. The profiles will be quite different for the upper, buoyancy-dominated part of the internally heated fluid layer, and the lower, penetrative part. Finally, the consequences of temporally and spatiotemporally modulating the internally heated turbulent convection will be studied. In particular, we want to understand the effect of the spatial and/or temporal modulation of the thermal driving source on the global flow organization, the heat and momentum transport, and the bulk temperature of the system. We expect to identify different regimes, depending on the modulation frequency, and want to theoretically explain these regimes and the transitions between them.


Go to Editor View