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Novel Quantum-Chaotic Ratchet E�ects: Full

Symmetry and Planck Maximal Uniformity

Itzhack Dana

Minerva Center and Department of Physics,
Bar-Ilan University, Ramat-Gan 52900, Israel

Classical Hamiltonian ratchets may exhibit a directed chaotic current only
for an asymmetric system with a mixed phase space, featuring �transporting�
stability islands. Such a current can never arise if just one of the following
three conditions is satis�ed: (a) The system is fully chaotic; (b) The system
is completely symmetric; (c) The initial ensemble is uniform in phase space.
Already several works have shown that an asymmetric quantum Hamiltonian
system with an unbiased force can exhibit signi�cant ratchet e�ects also when
its classical counterpart is fully chaotic [condition (a)].

In our work [1], we have presented a general exact theory of quantum
ratchets for the kicked particle subjected to a linear potential (e.g., gravity)
under quantum-resonance conditions (strong quantum regime) in the �free-
falling" frame. It was found that signi�cant quantum-ratchet e�ects emerge
under full-chaos conditions also when both the kicking potential and the initial
wave packet are completely symmetric [condition (b)], see Fig. 1.1.

Fig. 1.1: Completely symmetric (cosine) kicking potential (blue line) and initial
wave packet (red line). A purely quantum ratchet acceleration arises just from the
noncoincidence of the symmetry centers of these two entities.

Recently [2], a simple case of these �symmetric� e�ects in the absence of a
linear potential was experimentally realized using atom-optics techniques with
Bose-Einstein condensates (BECs) kicked by an optical potential. A good
agreement was found between the experimental results and the theory [1],
properly modi�ed to take into account the small but �nite initial momentum
width of the BEC.
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A �rst study of the semiclassical regime of full-chaos quantum ratchets
was presented in our very recent work [3]. Since the quantum-ratchet e�ect is
quite sensitive to the initial state [1] and since a uniform classical ensemble
in phase space carries no current [condition (c)], this study was performed
using a natural global approach, taking into account all the initial states
that are uniform in phase space with the maximal possible resolution of one
Planck cell. Our main result in a strong-chaos regime is that the distribution of
quantum currents I over all these states is a symmetry-independent Gaussian
with mean 〈I〉 = 0 and variance 〈I2〉 ≈ D~2/(2π2), where D is the classical
chaotic-di�usion coe�cient and ~ is a scaled Planck constant tending to zero
in the classical limit; see Fig. 1.2.

Fig. 1.2: Left: Distributions of normalized quantum currents I/∆I (∆I =
p

〈I2〉)
for ~ = 2π/121 and two values of the kicking strength (squares and diamonds) in
the case of a completely symmetric chaotic system; the solid line is a variance-1
Gaussian. Right: Similar to left �gure but for a strongly asymmetric chaotic system.
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From Fragile to Robust Pseudo-Hermitian

Phase in PT -Symmetric Lattices with Localized

Eigenmodes

Oliver Bendix1, Ragnar Fleischmann1, Tsampikos Kottos1,2, Boris Shapiro3,

and Theo Geisel1

1MPI for Dynamics and Selforganization, Bunsenstrasse 10, Goettingen, Germany
2Wesleyan University, Middletown, Connecticut 06459
3Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel

Hamiltonians exhibiting parity-time (PT ) symmetry have been the subject of
a rather intense research activity during the last few years [1-9]. This interest
was motivated by various areas of physics, ranging from quantum �eld theo-
ries, and mathematical physics to solid state and classical optics. A surprising
result that was pointed out in some of these investigations was the possibility
that non-hermitian PT symmetric Hamiltonians can have a purely real eigen-
value spectrum. At the same time, it was found that these systems exhibit
a spontaneous PT symmetry breaking during which the eigenvalue spectrum
undergo a transition [1] from an entirely real spectrum (the PT -symmetric
phase) towards a partially, or completely complex spectrum (the phase with
broken PT -symmetry). Usually this transition is controlled by a parameter
of the Hamiltonian.

We study the e�ect of localized modes in lattices of size N with parity-
time (PT ) symmetric potentials. Such modes are arranged in pairs of quasi-
degenerate levels with splitting δ ∼ exp−N/ξ where ξ is their localization
length. The level "evolution" with respect to the PT breaking parameter γ
shows a cascade of bifurcations during which a pair of real levels becomes
complex. The spontaneous PT symmetry breaking occurs at γPT ∼ min{δ},
thus resulting in an exponentially narrow exact PT phase. As N/ξ decreases,
γPT scales as 1/N2 while its distribution changes from log-normal to semi
-Gaussian [10]. We propose a way to preserve the robustness of the pseudo-
hermitian phase by using dimer lattices that posses a generalized PT symme-
try [11]. Our theory can be tested in the frame of PT -optical lattices.
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Avalanches of Bose-Einstein Condensates in

Leaking Optical Lattices

G. S. Ng1,2, H. Hennig1, R. Fleischmann1, T. Kottos1,2, and T. Geisel1

1MPI for Dynamics and Self-Organization, Bunsenstr. 10, 37073 Göttingen,
Germany
2Department of Physics, Wesleyan University, Middletown, CT-06459, USA

We study the decay of an atomic BEC population N(τ) from the leaking
boundaries of an optical lattice (OL). For a rescaled interatomic interaction
strength Λ > Λb, discrete breathers (DBs) are created that prevent the atoms
from reaching the leaking boundaries. Collisions of other lattice excitations
with the outermost DBs result in avalanches, i.e. steps in N(τ), which for a
whole range of Λ−values follow a scale-free distribution P (J = δN) ∼ 1/Jα.
A theoretical analysis of the mixed phase-space of the system indicates that
1 < α < 3, in agreement with our numerical �ndings.
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Studies of resonances in open microwave

cavities by the method of harmonic inversion

U. Kuhl1, R. Höhmann1, H.-J. Stöckmann1, and J. Main2

1 Fachbereich Physik, Philipps-Universität Marburg, Renthof 5, 35032 Marburg,
Germany
2 Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart,
Germany

From the measurement of a re�ection spectrum of an open microwave cavity
the poles of the scattering matrix in the complex plane have been determined
[1]. The resonances have been extracted by means of the harmonic inversion
method [2]. By this it became possible to resolve the resonances in a regime
where the line widths exceed the mean level spacing up to a factor of 10, a
value inaccessible in experiments up to now. For example the distributions of
line widths were studied and found to be in good agreement with predictions
from random matrix theory [3].
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Spreading of wave packets in one dimensional

disordered chains: Di�erent dynamical regimes

Ch. Skokos, S. Flach, and D. O. Krimer

Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38,
D-01187 Dresden, Germany

We present numerical results for the spatiotemporal evolution of a wave packet
in quartic Klein-Gordon (KG) and disordered nonlinear Schrödinger (DNLS)
chains, having equivalent linear parts. In the absence of nonlinearity all eigen-
states are spatially localized with an upper bound on the localization length
(Anderson localization). In the presence of nonlinearity we �nd three di�er-
ent dynamical behaviors depending on the relation of the nonlinear frequency
shift δ (which is proportional to the system's nonlinearity) with the average
spacing ∆λ of eigenfrequencies and the spectrum width ∆ (∆λ < ∆) of the
linear system. The dynamics for small nonlinearities (δ < ∆λ) is character-
ized by localization as a transient, with subsequent subdi�usion (regime I).
For intermediate values of the nonlinearity, such that ∆λ < δ < ∆ the wave
packets exhibit immediate subdi�usion (regime II). In this case, the second
moment m2 and the participation number P increase in time following the
power laws m2 ∼ tα, P ∼ tα/2. We �nd α = 1/3. Finally, for even higher
nonlinearities (δ > ∆) a large part of the wave packet is selftrapped, while
the rest subdi�uses (regime III). In this case P remains practically constant,
while m2 ∼ tα.

References
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Loss of synchronization in delay-coupled lasers:

on bubbling and on-o� intermittency

O. D'Huys1, V. Flunkert2, J. Danckaert1,3, I. Fischer4, and E. Schöll2

1 Dept.of Physics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
2 Institut für Theoretische Physik, TU Berlin, Hardenbergstraÿe 36, 10623 Berlin,
Germany
3 Dept. of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2,
1050 Brussel, Belgium
4School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh
EH1 4AS, Scotland, UK

Semiconductor lasers are of particular interest in the study of chaos synchro-
nisation. However, if two identical lasers are optically coupled over a �nite
distance, it has been observed that the coupling delay leads to spontaneous
symmetry breaking [1]. A passive relay in form of a semitransparent mirror
or an active relay in form of a third laser in between the two lasers have been
shown to stabilize the isochronous synchronisation solution [2, 3].

We numerically and analytically study this zero-lag chaos synchronisation
of two lasers which are delay-coupled via a passive or an active relay. We show
that both setups exhibit bubbling [4,5], i.e., noise-induced desynchronisation,
or on-o� intermittency depending on the coupling parameters.

In case of a passive relay, the synchronised system behaves like a single laser
with feedback. In the coherence collapse (CC) regime the trajectory itinerates
among the modes and antimodes (see Fig. 6.1(c)). The modes involved in the
chaotic itinerancy are transversally stable (blue circles), while the antimodes
are transversally unstable (red squares). Thus, when the trajectory approaches
an antimode, noise can lead to desynchronization (see Fig.6.1(a)). The yellow
diamonds in Fig. 6.1(c) mark the onset of a desynchronization event, showing
that bubbling always occurs in the vicinity of the antimodes, independent of
the power.

In the low frequency �uctuation (LFF) regime, in between power dropouts
the trajectory switches between di�erent attractor ruins of unstable external
cavity modes (ECMs) with a drift towards the maximal gain mode. All ECMs
involved in this intensity buildup process are transversally stable and we ob-
serve no desynchronization. During the power dropout the trajectory collides
with an antimode in a crisis. Again, the vicinity to transversally unstable anti-
modes, leads to bubbling (see Fig. 6.1(b)). This behaviour has also previously
been observed in unidirectionally coupled lasers [6]. With increasing feedback
the bubbling occurs less frequently, but it remains present within a physically
reasonable range of the coupling strength.

We �nd similar bubbling behaviour if we replace the passive relay by an
active relay, which is identical to the outer lasers (and has the same pump
current). However, when we increase the pump current of the middle laser,
we do �nd a transition to a bubbling-free state. In this case the system still
itinerates among the compound laser modes, but all the modes involved in
the dynamics are indeed transversally stable (see Fig. 6.1(d)).
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Fig. 6.1: Left: Time series for the passive relay case a) in the CC regime b) in the
LFF regime. Right: Projection of the dynamics onto the (ωS, nS)-plane for c) passive
relay (CC regime) d) strongly pumped active relay. Blue circles and red squares dis-
play transversally stable and unstable modes respectively. Yellow diamonds indicate
the onset of desynchronization. The variables ni, Ii and φi are the excess carrier
density, the intensity and the optical phase of laser i, respectively (index S denotes
a symmetrized variable),
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Coexistence of Synchronized and

Desynchronized States in Nonlocally Coupled

Oscillator Systems

Erik A. Martens1,2 and Steven H. Strogatz1

1 Theoretical and Applied Mechanics, Cornell University, Ithaca, New York, USA
2 Max Planck Institute for Dynamics an Selforganization, Göcttingen, Germany

We study networks of phase-coupled oscillators, based on the Kuramoto model
[3, 4], with nonlocal coupling

∂

∂t
φ(x, t) = ω +

∫
D

G(x− x′) sin[φ(x′, t)− φ(x, t) + α] d2x, (7.1)

where φ are the phases of individual oscillators with natural frequency ω
located at x in the domain D. The nonlocal coupling is given by a kernel
G such that the coupling strength decays with distance on the domain, e.g.
G ∼ exp (−κ|x|). Recently, Kuramoto et al. discovered that such systems
exhibit intriguing states where regions of synchronized and desynchronized
oscillators coexist and form a stable pattern [5,6]. This phenomena has since

Fig. 7.1: Example of a chimera state on a 2D lattice of oscillators with spiral wave.
A closeup of the desynchronized core is shown on the right.

then gained strong interest in the community and been investigated in various
settings to better understand its speci�c nature [1, 2, 7, 11].

We present a study concerning simple networks of oscillator populations
with nonlocal coupling. In particular, we �nd the existence of bistable chimera
attractors and study the in�uence of the underlying network topology on the
existence of chimerae [8�10]. A recent breakthrough in the �eld of coupled
oscillators made by Ott and Antonsen [12,13] enables us to perform a complete
stability analysis for these types of systems.
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Chimera states also occur on 2D lattices of oscillators in the shape of
spirals: in this case, the spiral arms form the synchronized region, whereas
the typically observed topological singularity in the center is replaced with a
zone of desynchronized oscillators, as shown in Fig. 7.1. We demonstrate how
to obtain analytical solutions of this system and present a method to calculate
the radius of the desynchronized core analytically.
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Phase Condensation in Bursting Chaos with

Weak Periodic Forcing

H. Ando1,2,3, H. Suetani4,5, and K. Aihara2,3

1 RIKEN Brain Science Institute, Saitama, 351�0198 Japan
2 Institute of Industrial Science, The University of Tokyo,Tokyo, 153-8505 Japan
3 Aihara Complexity Modelling Project, ERATO, JST, Tokyo, 153-8505 Japan
4 Department of Physics, Kagoshima University, Kagoshima, 890�0065 Japan
5 Decoding and Controlling Brain Information, PRESTO, JST, Kawaguchi
332�0012, Japan, and RIKEN Advanced Research Laboratory, Saitama, 351�0198
Japan

Synchronization phenomena are ubiquitous in biology, e.g. pacemaker cell
in the heart, neuronal systems, �ashing �re�ies, and so on. Recently, those
synchronization phenomena can be modeled as a phase synchronization in
weakly coupled limit cycle oscillators with a certain phase. Then, phase syn-
chronization in those oscillators has much gathered attention during a few
decades [Strogatz(2000)].

Moreover, such kind of phase synchronization can be generalized in chaotic
oscillators [Pikovsky et al.(1997)]. At the �rst stage, chaotic phase synchro-
nization (CPS) has been studied in a chaotic oscillator with one rotation center
like the Rössler system. Therefore, there are several ways to de�ne the phase
of the chaotic oscillators.

On the other hand, complex systems like biological system have not only a
simple rotation but also complex rotations such as neuronal spiking or bursting
[Connors and Gutnick(1990)]. However, in contrast to an ordinary CPS for
single rotation center, it is not straightforward to de�ne the phase of the
non-coherent chaotic oscillations.

Recently, Pereira et al. proposed a concept of the localized sets in order
to detect phase synchronization in a multi-time-scale neuronal system which
has several rotation centers [Pereira et al.(2007)]. Suppose that a chaotically
bursting neuron is driven by a periodic force. If there is a phase synchro-
nization between the neuron and the driving force, localized sets on chaotic
attractor for the stroboscopic map can be detected.

In this presentation, let us focus on a system with very weak driving
force, where localized sets cannot be observed, i.e. the stroboscopic map is
not localized. We investigate the neural bursting system proposed by Chay
[Chay(1985)] with the weak sinusoidal force K sin(Ωt). This bursting system
has two separated modes with complex rotation centers, i.e. slow and fast
modes which correspond to bursting oscillations and refractory periods. We
add the sinusoidal driving force with the corresponding fast mode.

First, in order to characterize the correlation between the dynamics of the
system and the driving force, we calculate the time evolution of the ensemble
average of N -identical uncoupled bursting systems driven by the same driving
force. We investigate the dependence of the variance and the power spectrum
of the time evolution on the amplitude of the driving force K.

Next, according to the concept of the localized sets, we de�ne the phase
of the driven chaotic dynamics by corresponding phase of the periodic driving
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force when the chaotic orbits pierce an appropriate Poincaré section in the
driven system. Using this phase, we analyze the distribution of the phases of
uncoupled ensemble of bursting systems.

Interestingly, we have found a non-trivial phase transition with respect
to K in the vicinity of natural frequency of the fast mode for Ω as shown
in Fig.8.1 (Left). There is a plateau in the phase transition. Furthermore, in
very weak amplitudes of forcing K, we can observe a condensation in the
distribution of the phases of the ensemble with increasing K (see Fig. 8.1
(Right)), where no clear phase synchronization is observed in the sense of
the localized sets. In fact, we can observe phase synchronization between the
ensemble average of the driven systems and the same driving force.

Fig. 8.1: (Left) Variance of the time evolution of ensemble with respect to the am-
plitude of forcing K. (Right) Histogram of the phases of the ensemble with respect
to di�erent K. K = 0, 0.01, 0.02, and 0.06.
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Synchronization and Collective Transport in

linearly coupled Inertia Ratchets

U. E. Vincent1,2, A. Kenfack3, D. V. Senthikumar4,5, D. Mayer1, and
J. Kurths5,6

1 Institut für Theoretische Physik, Technische Universität Clausthal
Arnold-Sommerfeld Str. 6, 38678 Clausthal-Zellerfeld, Germany
2 Department of Physics, Lancaster University, Lancaster LA1 4YB, United
Kingdom
3 Physikalische und Theoretische Chemie, Institut für Chemie und Biochemie,
Freie Universität, Takustr. 3, 14195 Berlin, Germany
4 Center for Dynamics of Complex Systems, University of Potsdam, 14469,
Germany
5 Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
6 Institut für Physik, Humboldt University zu Berlin, Newtonstr. 15, 12489 Berlin,
Germany

Transport phenomena and in particular directed transports of nonlinear non-
equilibrium dynamical systems modelled by ratchet systems are ubiquitous in
nature. A large number of researches have been devoted to the understanding
of the ratchet e�ect for the one-dimensional ratchet system. In reality, one
cannot �nd an isolated particle system. Thus, one fundamental problem re-
lates to the ratchet transport mechanism when two or more isolated ratchets
interact via a speci�c coupling. In this paper, we consider the dynamics of two
elastically coupled inertia ratchets in a perturbed asymmetric potential. We
show that the particle-particle interactions could lead to varieties of collective
transports ranging from stable on-o� intermittent synchronized state to full
synchrony. The fully synchronized state is achieved via a transition from on-
o� intermittent synchronized state accompanied by crisis event in which the
particles exhibits stepwise-sliding dynamics typical of the actin-myosin sys-
tems in muscles. We show that the dynamics and the corresponding transport
mechanism is strongly dependent on the strength, ε of the particle-particle
interaction and in particular, optimal and enhanced transport could arise as
ε is progressively increased up to the fully synchronized state.
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NoEBIOSM(EU) Contract No. LSHB-CT-2004-005137

16 Hilbert Hall Thursday, 13:00


