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Triggering bursts in all-to-all coupled neurons
with global inhibition

H.-V. V. Ngo1,2,3, J. Köhler3, J. Mayer3, J.C. Claussen1, and H.G. Schuster3

1 Institute for Neuro- and Bioinformatics, University of Lübeck, 23562 Lübeck,
Germany
2 Graduate School for Computing in Medicine and Life Sciences, University of
Lübeck, 23562 Lübeck, Germany
3 Institute for Astrophysics and Theoretical Physics, University of Kiel, 24098
Kiel, Germany

Slow-wave sleep in mammals is characterized by a change of large-scale cortical
activity currently paraphrased as cortical up/down states. Recently Shu et
al. demonstrated experimentally a bistable collective behavior in ferret brain
slices, with the remarkable property that up states can be switched on and
o� with pulses, or excitations, of same polarity; whereby the e�ect of the
second pulse signi�cantly depends on the time interval between the pulses.
We present a time discrete model of a neural network that reproduces this
type of stimulation response and quantitatively the time-dependence found in
the experiments.
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Sequential Desynchronization of Clusters
in Spiking Neural Networks

Christoph Kirst1,3, Theo Geisel1−3, and Marc Timme1−3

Max Planck Institute for Dynamics and Self-Organization (MPIDS)
2 Bernstein Center for Computational Neuroscience (BCCN) Göttingen
3 Faculty of Physics, Georg-August-University Göttingen, Germany

The brain processes information in networks of neurons that interact by send-
ing and receiving electrical pulses called spikes. The response of a neuron to
incoming signals strongly depends on whether or not it has just sent a spike
itself. After the initiation of a spike the membrane potential at the cell body
(soma) is reset towards some potential and the response to further synaptic
input is reduced due to the refractoriness of the neuron. The dendritic part
of the neuron where incoming signals are integrated is a�ected only indirectly
by this reset due to intra-neuronal interactions.

Several multi-compartment models have been proposed, in which di�erent
parts of a single neuron interact to characterize this e�ect. For instance, in
a two-compartment model [1] of coupled dendrite and soma, the membrane
potential at the soma is reset after spike emission while the dendritic dynamics
is a�ected only by the resistive coupling from the soma to the dendrite. This
accounts for the fact that in several kinds of neurons residual charge remains

b ca

d

Fig. 2.1: Sequential desynchronization transition in a network of N = 50 oscillatory
neurons. The phases φi of all neurons are plotted against the s-th spike of a reference
neuron. (a) For weak partial reset strength c the synchronous state is stable and
coexist with (b) cluster states. Increasing c sequentially destabilizes the clusters
until only (c) the asynchronous state is observed. (d) Probability P(a) of observed
cluster sizes a in the asymptotic dynamics starting from random phases uniformly
distributed in [0, 1). red line: exact theoretical prediction above which clusters are
unstable.
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on the dendrite (following the somatic reset), that is then transferred to the
soma [2]. Thus the dynamics of the individual neurons is modi�ed which
severely a�ects the collective capabilities of networks of such neurons.

Here we propose a neuron model that after spike emission exhibits a partial
response to residual input charges and study its collective network dynamics
analytically [3�5]. We uncover a desynchronization mechanism that causes a
sequential desynchronization transition [3, 5] (cf. Fig. 2): In globally coupled
neurons an increase in the strength of the partial response induces a sequence
of bifurcations from coexistent states with large clusters of synchronously �r-
ing neurons, through states with smaller clusters to completely asynchronous
spiking. We study the consequences of this mechanism in more general net-
works by connecting our simple model to more realistic biophysical ones using
spike time response curves.

This novel mechanism for neural desynchronization di�ers strongly from
known mechanisms that are based, e.g., on heterogeneity, noise, or delayed
feedback [6, 7]. Possibly, the mechanism presented here may also be used in
modi�ed form to prevent synchronization in neural systems like in Parkinson
tremor or in epileptic seizures [7].
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Phase Transitions Towards Criticality in a
Neural System with Adaptive Interactions

A. Levina1,2, J. Michael Herrmann1,3, and T. Geisel1,2

1 Bernstein Center for Computational Neuroscience
2 Max Planck Institute for Dynamics and Self-Organization
3 University of Edinburgh

The concept of self-organized criticality (SOC) [4] describes a variety of phe-
nomena ranging from plate tectonics, the dynamics of granular media, and
stick-slip motion to neural avalanches [5]. These examples have in common
that a marginally stable dynamics is maintained by self-tuning of parameters
towards critical values and that the event sizes obey a characteristic power-law
distribution. In neuronal systems the existence of critical avalanches was pre-
dicted in a paper of one of the present authors [5] and observed experimentally
by Beggs and Plenz [3].

In analogy to the physical systems mentioned above, the strength of the
interaction among the neural units by synaptic connections has been identi�ed
as a critical parameter [5]. In real neural systems the connection strengths are
not static but depend on the relative timing of the neural activity pulses [6].
While the system with static coupling has a classical critical point [5], we show
analytically that the adaptive model attains criticality in an extended region
of the parameter space that is bounded by phase transitions. It was previously
shown that an extended critical interval can be obtained in a neural network
by incorporation of depressive synapses [1]. In the present study we scrutinize
a more realistic dynamics for the synaptic interactions that can be considered
as the state-of-the-art in computational modeling of synaptic interaction. In-
terestingly, the more complex model does not exclude an analytical treatment
and it shows a type of stationary state consisting of a self-organized critical
phase and a subcritical phase that has not been described earlier [2]. The
critical region of the connectivity parameter is sandwiched between a sub-
and a supercritical regime which also can be reached experimentally by a ma-
nipulation of the synaptic strengths, c.f. Fig. 3.1 (left). The behavior of the
system can be well described by the mean-�eld approach, c.f. Fig. 3.1 (right).
The system exhibits a rich dynamical behavior including a hysteresis between
critical and non-critical dynamics, switching of the dynamics in dependence of
external inputs, and �rst- and second-order phase transitions that form a cusp
bifurcation. Although presented in the speci�c context of a neuronal model,
this dynamical structure is of more general interest as the �rst observation of
a complex classical bifurcation scenario combined with a SOC phase.
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Fig. 3.1: (left) Distributions of avalanche sizes in dependence on the interaction
parameter α for a network of size N = 300. At α < αc ≈ 0.55 the distributions are
subcritical (green), while between αc and α

c ≈ 0.62 also a critical phase exists (red),
which survives beyond αc, a supercritical distributions are observed for α > 0.62
(blue). (right) Average synaptic strength 〈uijJij〉 (virtually straight line) and inter-
spike interval 〈∆isi〉(curved lines, from bottom to top). Dependencies are found
from the self-consistency equation for α = 0.5, α = αc, α = 0.54, α = αc, and
α = 0.6. Intersections of the lines provide solutions of self-consistency equation.
Circles represented numerical results for a network with matching α and parameters
N = 300, ν = 10, u0 = 0.1, and I0 = 7.5.
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Correlations, synchrony and entropy in a pair of
neurons

Tatjana Tchumatchenko1,2,3, Aleksey Malyshev4,5, Theo Geisel1,2, Maxim

Volgushev4,6,5, and Fred Wolf1,2

1 Department of Nonlinear Dynamics, Max-Planck-Institute for Dynamics and
Self-Organization, D37073 Göttingen, Germany
2 Bernstein Center for Computational Neuroscience, D37073 Göttingen, Germany
3 Göttingen Graduate School for Neurosciences and Molecular Biosciences and
Faculty of Physics, University of Göttingen, D37073 Göttingen, Germany
4 Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485 Moscow,
Russia
5 Department of Psychology, University of Connecticut, Storrs, CT 06269, USA
66 Department of Neurophysiology, Ruhr-University, D44780 Bochum, Germany

In order to understand the origin, temporal properties and strength of in-
terneuronal spike correlations it is essential to analyze how neurons subject
to correlated synaptic inputs coordinate output spiking activity. We used a
simple statistical framework for the analysis of spike correlations and entropy
content in pairs of neurons driven by correlated inputs [1]. We examined the
synchronization acuity of a pair of neurons subject to a variable percentage of
common �uctuating input of di�erent correlation times. First, we calculated
the auto conditional �ring rate of an individual neuron and analyzed its short
and long time asymptotics. For large time lags, we �nd a substantial in�uence
of the second derivative of the voltage correlation function. In the limit of
short times, we �nd an algebraic rise out of a period of intrinsic silence after
each spike which mimics a refractory period. Additionally, we computed the
entropy di�erence between two uncorrelated and two correlated neurons and
found that the entropy di�erence is �ring rate dependent and is sensitive to
the sign of the correlation strength. Furthermore, we studied the cross condi-
tional �ring rate of a pair of neurons for 1) low and 2) high common input
fraction and 3) with �ring rate heterogeneity. In the low correlation regime,
we identi�ed a rate dependence of the rate of synchronous �ring corroborating
previous observations [2] and predict that spike correlations in this regime re-
�ect detailed properties of input correlations. In the high correlation regime,
however, the synchronous rate ceases to depend on the stationary �ring rate
of individual neurons and the structure of spike correlations is governed by the
input correlation time and the coupling strength but is insensitive to �ring
rate and the detailed form of input correlations. For all strengths of corre-
lations the model predicts the appearance of a systematic delay of �ring of
the lower rate neuron relative to the higher rate neuron. This e�ect can sig-
ni�cantly decrease spike count correlation coe�cient for large time bins. We
tested the theoretical predictions of our framework in in vitro experiments
in slices of rat visual cortex and injected in pyramidal neurons �uctuating
currents with a varying degree of common input. Cross and autoconditional
�ring rates computed from these recordings, con�rmed all basic theoretical
predictions 1)-3) of our formalism.
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Dynamics of wave segments on curved cortex

M. A. Dahlem1, F. Kneer1, N. Hadjikhani2, and E. Schöll1

1 Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
2 Martinos Center for Biomedical Imaging, Harvard Medical School, USA, & Brain
Mind Institute, EPFL, Lausanne, Switzerland

Waves of cortical spreading depression (SD) have been suggested to cause
visual �eld defects in migraine [1]. Despite a precise match in the speed of
both phenomena, the spatio-temporal wave patterns of SD observed in �at
animal cortex and visual �eld defects mapped to the curved human cortical
surface (Fig. 5.1) ordinarily di�er in aspects of size and shape [2].

Fig. 5.1: Visual �eld defects and 3D form of primary visual cortex. (a) Left visual
hemi�eld: the position of the propagating visual �eld defect, observed during a
migraine attack, is indicated by white lines, with numbers denoting the time in
minutes after onset. (b) Cortical surface with the representation of the azimuthal
coordinate of the left visual hemi�eld measured by functional magnetic resonance
imaging (fMRI) [3]. Color code: hue, value, saturation color model as in (a).

We show that this mismatch in the patterns is reconciled by utilizing
that both types of patterns bifurcate from an instability point of a generic
reaction-di�usion model. To incorporate features of in vivo human cortical
physiology not present in animal in vitro models, we augment the extended
Hodgkin-Grafstein reaction-di�usion model of SD (equivalent to FitzHugh-
Nagumo equations, see [4]) with a global time-delayed feedback representing
the neurovascular coupling. We model the pattern formation on a curved
surface:

∂tu = u− u3/3− v +∆LBu (5.1)

ε−1∂tv = u+ β − γv +K

∫
Θ(u(t− τ)− uth) (5.2)

with the Laplace-Beltrami di�usion operator on a curved surface
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)
, (5.3)

gij are the components of the inverse of the metric tensor and g denotes the
determinant of the metric tensor, furthermore, Θ is the Heaviside function, τ
a time delay, and uth a threshold.

Our results suggest that SD in humans is much closer to a bifurcating
instability point of pattern formation than in nonprimate mammals. From a
synergetics point of view, the brain is in general viewed as a self-organizing
pattern forming system that operates close to instability points [5]. We con-
clude that in the case of migraine SD waves, the important point in state space
is a 2D critical solution of the reaction-di�usion system in the shape of a wave
segment with exactly one negative eigenvalue whose center-stable manifold of
co-dimension 1 de�nes the threshold surface in state space separating initial
conditions belonging to the stable homogeneous state (healthy cortical state)
from those leading to the initiation of SD (migraine attack). Being close to
this instability point in the presence of augmented transmission capabilities
dramatically changes the dynamical repertoire of pattern formation in the
cortex. This factor, as will be discussed, could have important implications
for the design of biomedically engineered devices that intelligently target the
occurrence of SD waves based on methods adapted from chaos control [6].
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Controlling e�ective connectivity in networks of
coupled cortical areas

Demian Battaglia1, Nicolas Brunel2, and David Hansel2

1 Max Planck Institute for Dynamics and Self-organization, Nonlinear Dynamics
department, Bunsenstrasse 10, D-37073 Göttingen
2 University Paris Descartes, Laboratory of Neurophysics and Physiology, CNRS
UMR 8119, Rue des Saints Pères 45, F-75270 Paris Cedex 06

The anatomy of long-range synaptic connections between local cortical cir-
cuits or distinct cortical areas constrains at a large extent the spatio-temporal
complexity of neural responses and, more speci�cally, of brain rhythmic activ-
ity [1, 2]. However such structural connectivity does not necessarily coincide
with e�ective connectivity, related to the more elusive question �Which ar-
eas drive the activity of which others?� [3]. E�ective connectivity is directed
and is often task-dependent, evolving even across di�erent stages of a single
task [4, 5]. These fast changes are incompatible with the slow variation of
anatomical connections in a mature brain and might be explained as dynam-
ical transitions in the collective organization of neural activity.

We consider here small fully-connected networks of interacting cortical
areas (N = 2 ÷ 4), modeled both as mean-�eld rate units and as large pop-
ulations of spiking neurons. Intra-areal local couplings can be inhibitory or
excitatory while inter-areal longer-range couplings are purely excitatory. All
these interactions are delayed. Su�ciently strong local delayed inhibition in-
duces synchronous fast oscillations and phase-locked multi-areal polyrhythms
are obtained for weak long-range excitation [6, 7].

Even if these small structural networks are fully symmetric, varying the
strength of local inhibition and the delays of local and long-range interactions
generates dynamical states which spontaneously break the symmetry under
permutation of the areas. The simplest example is provided by the N = 2 net-
work in which transitions from in-phase or anti-phase to out-of-phase lockings
with intermediate equilibrium phase-shifts are identi�ed [7]. Areas leading in
phase over laggard areas can therefore be unambiguously pinpointed, intro-
ducing naturally a directionality in inter-areal communication.

Remarkably, asymmetries in phase-locked polyrhythms are ampli�ed in the
associated chaotic states seen for strengthened inter-areal couplings. In these
cases indeed, the �ring rate oscillations of laggard areas undergoes signi�cantly
stronger amplitude �uctuations than leading areas. Asymmetric chaotic states
can be described as conditions of e�ective entrainment in which laggard areas
are driven into chaos by the more periodic �ring of leader areas (see Fig.6.1).

Fully symmetric structural networks can thus give thus rise to multiple
alternative e�ective networks with reduced symmetry. Transitions between
di�erent e�ective connectivities are achieved via transient perturbations of
the dynamics without need for costly rearrangements of the structural con-
nections.
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Fig. 6.1: An example of e�ective entrainment in a symmetric network of N = 2
coupled areas, compared with direct entrainment in an asymmetric network.
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A mathematical model of homeostatic
regulation of sleep-wake cycles by
hypocretin/orexin

S. Postnova, K. Voigt, and H.A. Braun

Institute of Physiology, University of Marburg, Deutschhausstraÿe 2, D-35037,
Marburg, Germany

A generally accepted concept of sleep regulation postulates that sleep-wake
transitions result from the interaction between the circadian and homeostatic
processes [1]. The circadian process is ascribed to the activity of the suprachi-
asmatic nucleus of the hypothalamus, while the mechanisms of the homeo-
static process are still unclear.

In this study we present a concept of hypocretin/orexin-based control of
sleep homeostasis. Hypocretin/orexin (hcrt/orx) is a neuropeptide which is
produced in the lateral hypothalamus and its absence leads to the well-known
sleep disorder narcolepsy. We propose that (1) high frequent impulse activity
of the hcrt/ox neurons during wakefulness is sustained by reciprocal excitatory
connections with other, e.g. local glutamate neurons; (2) the transition to a
silent state (sleep) is going along with a weakening of the hcrt/ox synaptic
e�cacy.

This concept has been realized in a mathematical model with Hodgkin-
Huxley-type neurons and physiology-based synapses. The model is capable to
simulate the neuronal activity which corresponds to the sleep-wake transitions
and the e�ects of various disturbances. It o�ers a new approach for further
evaluation of the physiological, especially homeostatic mechanisms of sleep-
wake cycles on the basis of neuronal activity and synaptic transmission.

The work was supported by the European Union through the Network of
Excellence BioSim contract No LSHB-CT-2004-005137.
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The dynamics of a model system for invariant
object recognition

J. Zhu and C. von der Malsburg

Frankfurt Institute for Advanced Studies, Germany

An important problem in neuroscience is object recognition invariant to trans-
formations, such as translation, rotation and scale. Many dynamic models
have been proposed to perform this task with considerable success [1, 2]. In
order to gain insights on the recognition dynamics and the organization of
stored objects, we here propose a model system as an abstraction of invariant
recognition.

Assume there are q objects Mk ∈ Rn, k = 1, · · · , q, in the gallery, and p
possible transformations Γ k, k = 1, · · · , p. An input image I ∈ Rn is generated
by one of the objects through a transformation. The task is to recover the
object and the transformation that generate I. The system variables are C =
(c1c2 · · · cp)T for the selection of transformations, and D = (d1d2 · · · dq)T for
object selection.

Fig. 8.1: The structure of a model system for invariant recognition.

The structure of our model system is shown in Fig. 8.1. Between the input
image and the gallery are two assembly layers. The image assembly layer
XI is a combination of transformed images, while the gallery assembly layer
XG is a combination of models. If both combinations are linear, we have
XI = (

∑
k ckΓ

k)I =
∑

k ckP
k, andXG =

∑
k dkM

k. The goal is to determine
C and D, such that XI = XG.

When p + q > n, the system is underdetermined, having many solutions.
Because 0 is always a solution, we impose a constraint on the total activity of
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the system, and de�ne the energy function

E = ‖XI −XG‖2 + λ(CTC − 1)2 + λ(DTD − 1)2. (8.1)

The dynamics follow the gradient of the energy function. Unfortunately the
constraint on total activity is not su�cient to warrant a unique solution. An
example solution is shown in Fig. 8.2 for n = 20× 20, p = 18× 18× 2, q = 8.
The ground truth is c1 = 1, d5 = 1 and all other variables 0.

Fig. 8.2: An example solution di�erent from true cause (0 except for c1 = 1, d5 = 1).

We propose a coarse-to-�ne strategy where variables are �rst grouped
(share the same dynamics) such that a unique solution can be obtained. Then
variables within the winning groups resume their own dynamics, using the
group solution as initial value. We show that this coarse-to-�ne dynamics can
recover true sparse causes.

Acknowledgement: supported by EU project SECO and the Hertie Founda-
tion.
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