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Bifurcation analysis of geophysical time series

V.N.Livina1, F.Kwasniok2, and T.M.Lenton1

1 School of Environmental Sciences, University of East Anglia, Norwich, UK
2 School of Engineering, Computing and Mathematics, University of Exeter,
Exeter, UK

We propose a general synthetic framework, combining analytical and experi-
mental techniques, for studying climatic bifurcations and transitions by means
of the time series analysis. The method employs three major techniques:
(i) derivation of potential from time series using unscented Kalman Filter
(UKF); (ii) studying possible bifurcations and transitions of the obtained
potential; (iii) projection of the time series according to the estimated pertur-
bation. The method is tested on arti�cial data and then applied to observed
records, in particular, a Greenland temperature proxy. We correctly detect
potential changes in arti�cial series with a varied number of potential wells.
In the case of Greenland data, the technique detects a change of the num-
ber of system states from two to one (double-well potential transforming into
single-well) at about 20 kyr BP.

Wednesday, 11:00 Audi Max 3



2

Nonlinear dynamics of modern power grids

M. Rohden1, A. Sorge1, H. Kielblock1, S. Grosskinsky2, and M. Timme1,3

1 Network Dynamics Group, Max Planck Institute for Dynamics and
Self-Organization, 37073 Göttingen, Germany
2 Mathematics Institute and Centre for Complexity Science, University of
Warwick, Coventry CV4 7AL, UK
3 Faculty of Physics, University of Göttingen, 37073 Göttingen, Germany

Reliable supply of electric power is a crucial pre-condition for everyday life
in modern economy and society [1]. The generation of electric power is cur-
rently heavily dominated by relatively few but large power plants based on
conventional energy (Figure 2.1a) but the contributions from renewable power
sources become more and more signi�cant (Figure 2.1b). Renewable sources
such as wind- or solar-electric sources, however, come in much larger num-
bers, individually provide output powers that are typically orders of magni-
tude smaller than conventional ones, and are temporally less reliable and geo-
graphically much more distributed. Moreover, the entire power grid over time
rearranges due to these developments. These features provide major challenges
for the design and construction of reliable modern power grids - a multi-billion
Euro market alone in Europe. One major question is how to ensure stable and
robust synchronization of the entire grid given widely-distributed, dominantly
small, and strongly �uctuating sources [3]. To date research strongly focused
on so-called "smart grids", power grids that - in parallel to power transmis-
sion, enable the transfer of information about local load, storage, and control
status throughout the grid; the impact of connection architecture on future
grids performance, however, has received much less attention [4], [5] and is far
from beeing understood.
Here we present and systematically study a class of oscillator networks [2] to
characterize fundemental aspects of the synchronization dynamics of electric
power distribution. Single units are modeled by two variables and the network
is quanti�ed by three key features: the strengths of power sources, the capac-

(a) Scheme of a power grid dominated
by one large power plant (red) and
lots of consumers (black)

(b) Scheme of a power grid with
smaller, distributed power sources

Fig. 2.1: Schematics of di�erent power grid types
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ities of transmission lines, and the maximum power used by consumer sinks.
We �nd how replacing a low number of strong sources by a large number of
small sources destabilizes synchronization and explain the mechanism under-
lying destabilization. We provide �rst hints how to circumvent destabilization
by moderately restructuring local and connectivity features of the power grid.
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Wave localization in complex networks with

high clustering

J. W. Kantelhardt1, L. Jahnke1, R. Berkovits2, and S. Havlin2

1 Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Germany
2 Minerva Center and Department of Physics, Bar-Ilan University, Israel

Complex networks can exhibit a transition from a phase with metallic trans-
port properties to a phase with insulating behavior, i. e., no transport across
the network. The simplest cause of such a transition is the breaking of the
cluster spanning the network, akin to the classical percolation transition.
Quantum phase transitions (Anderson-like transitions), on the other hand,
are relevant in complex networks with long-range coherent wave transport,
e. g., in optical networks. In this case, quantum localization can be caused by
backscattering and interference due to disorder in the network.

Fig. 3.1: Representative pictures of the giant component of scale-free networks
(λ = 5) (a) without and (b) with clustering (C0 = 0.6). Both networks have gi-
ant components of similar size (N ∼ 150); the size of the whole network being
N = 150 for (a) and N = 200 for (b). The logarithmically scaled coloring presents
the intensity of a mode with E ≈ 0.2, red indicating the highest and violet the lowest
probability.

We show that strong clustering of links, i. e., a high probability of tri-
adic closure, can induce a localization-delocalization quantum phase transition
of coherent excitations [1]. Figure 3.1 illustrates how the network structure
changes upon increasing the clustering index and how the localization proper-
ties of a wave function change. Clustering represents a new degree of freedom
that can be used to induce and study phase transitions in complex networks.
Comparing systems with di�erent clustering properties might enable one to
�nd the most relevant cause of quantum localization.

For example, the propagation of light wave-packets between two distant
nodes of an optical network (composed of �bers and beam splitters) will be ab-
sent if the fraction of closed triangles exceeds a certain threshold. We suggest
that such an experiment is feasible with current optics technology.

Numerically studying level statistics we determine the localization phase
diagram as a function of the clustering coe�cient C and the on-site disorder
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Fig. 3.2: Phase diagram for transitions from localized optical modes (upper right) to
extended modes in parts of the spectrum (lower left) for di�erent degree distribution
exponents λ, λ = 4 (blue diamonds), 4.25 (magenta circles), and 5 (red squares).
Data for C0 > 0.9 are not reliable for network generation reasons, and the error bar
for the point at C0 = 1 is about 0.1.

W for scale-free networks of di�erent degree distributions P (k) ∼ k−λ. Here,
k denotes the number of neighbors per node.

We �nd that (i) a localization-delocalization transition is induced by in-
creasing C even in the absence of on-node (on-site) disorder W for λ > 4; (ii)
the quantum transition point Cq moves to lower values when W is increased
(continuous phase diagram, see Fig. 3.2); and (iii) the scaling exponent ν is
very close to the mean-�eld value ν = 0.5 for all values of λ and Cq, as may
be expected for a system with high spatial dimension. We have also veri�ed
that similar results hold for networks with homogeneous or Erdös-Renyi type
degree distribution P (k). For P (k) ∼ k−λ with λ > 4.5 (approximately) there
is an additional distinct classical transition at a clustering coe�cient Cc > Cq.
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Generic long-range correlations in music

rhythms

H. Hennig1,2, R. Fleischmann1, A. Fredebohm3, Y. Hagmayer3, A. Witt1,

J. Nagler1,2, F. Theis1,4, and T. Geisel1,2

1 Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
2 Institute for Nonlinear Dynamics, University of Göttingen, Germany
3 Institute for Psychology, University of Göttingen, Germany
4 CMB, Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum
München, Germany

Music rhythms performed by humans will always �uctuate to a certain amount
around the exact rhythm (e.g. given by the steady beat of a metronome). We
refer to these �uctuations as temporal deviations en from the metronome
clicks. It is believed that the task of synchronizing the movement of one's
�nger to a periodic environmental signal (�nger tapping) shows deviations
from the signal which exhibit long-range correlations (1/fβ-type) [1, 2]. But
musicians do not restrict themselves to �nger tapping.

We present preliminary results on generic long-range correlations in simple
as well as in complex music rhythms [3]. The fact that long-memory processes
arise in a broad variety of complex rhythmic tasks suggests that a common ba-
sic neurophysical mechanism accounts for the timing in human music rhythms.
Moreover, we investigate the question: Does the rhythmic structure of a piece
of music sound better to listeners, when it is as exact as possible or are long-
range correlations more favorable?
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Cross-modulated amplitudes and frequencies

characterize interacting components in complex

systems

A. Y. Schumann1, F. Gans1, J. W. Kantelhardt1, T. Penzel2, and I. Fietze2

1 Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Germany
2 Schlafmedizinisches Zentrum der Charité Berlin, Germany

The dynamics of complex systems is characterized by oscillatory components
on many time scales. To study the interactions between these components we
analyze the cross-modulation of their instantaneous amplitudes and frequen-
cies, separating synchronous and anti-synchronous modulation. Our approach
is a direct and systematic way to screen simultaneously recorded time series
for linear and non-linear interactions. Speci�cally, we can observe how am-
plitude or frequency of one emergent oscillator in a speci�c location a�ects
amplitude or frequency of another oscillator in a di�erent place and/or oper-
ating at a di�erent frequency. The approach is stable for non-stationary data
� a major advantage for slow dynamics.

Applying our novel technique to brain-wave oscillations in the human elec-
troencephalogram (EEG) we show that interactions between the α wave and
the δ or β wave oscillators as well as spatial interactions can be quanti�ed
and related with physiological conditions (e. g., sleep stages).

The method begins with the separation of signals into speci�c frequency
bands. Then, instantaneous amplitudes and frequencies for each band are cal-
culated via a Hilbert transform. The �nal step is an analysis of synchronous
and anti-synchronous variation of these signals involving a second Hilbert
transform. The corresponding synchronization and anti-synchronization in-
dices are averaged in time windows of 30 seconds and presented in matrix
format in Fig. 5.1 for (a) amplitude-amplitude modulation, (b,c) amplitude-
frequency cross-modulation, and (d) frequency-frequency modulation.

The calculation of instantaneous amplitudes and frequencies in time series
characterizing the dynamics of a complex system is useful in at least two
aspects. Firstly, it yields amplitude and frequency series showing long-term
scaling in some physiological states. Secondly, these signals can be used to
study and characterize in detail linear and nonlinear interactions between
the corresponding oscillators with very di�erent characteristic frequencies and
hence support modeling. Furthermore, the approach could be helpful in �nding
the origin of scaling behavior in complex systems in biology, geoscience and
�nancing.
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complex systems, Phys. Rev. Lett. 102, 098701.
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Fig. 5.1: Results of modulation analysis of instantaneous amplitudes (a) and fre-
quencies (d) as well as amplitude-frequency cross-modulation analysis (b,c). The
four 36 × 36 matrices show the modulation coe�cients γ+ [(c) and upper triangles
in (a,d)] and γ− [(b) and lower triangles in (a,d)] with modulation degrees increas-
ing from blue to green, yellow and red. The six �rst rows and columns refer to the
δ1 band of the EEG electrodes O1-M2 (occipital left), O2-M1 (occipital right), C3-
M2 (central left), C4-M1 (central right), Fp1-M2 (frontal left), and Fp2-M1 (frontal
right); repeated for each band.
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Elastic network modeling of molecular motor

HCV helicase: Inchworm translocation and

DNA unzipping cycles

Holger Flechsig and Alexander S. Mikhailov

Department of Physical Chemistry, Fritz Haber Institute of the
Max-Planck-Society, Faradayweg 4-6, 14159 Berlin

Protein machines that operate as mechanical motors play a fundamental role
in biological cells. Prominent examples are kinesin that transports cargo along
microtubules through the cell or myosin that generates muscle contractions
through its interaction with actin �laments. To execute their functions, pro-
tein motors need energy provided with ATP molecules. Binding and hydrolysis
of ATP induce large-scale conformational changes essential for the operation
of motor proteins. One of the key problems is to gain insight into cyclic con-
formational motions of protein motors and understand how they are coupled
to the actual function in the cells.

While the structure of many motor proteins is known, modeling of dy-
namics of their operation cycles presents substantial di�culties. Because the
cycles of molecular motors are slow and typically lie in the range from tens
of milliseconds to a second, they cannot be followed in all-atom molecular
dynamics simulations. On the other hand, phenomenological models such as
mechanical ratchets or stochastic oscillators provide an oversimpli�ed view of
motor operation, reducing it to e�ective motions along a single mechanical co-
ordinate. More realistic coarse-grained descriptions are therefore needed to �ll
the gap between simple phenomenology and full atomic dynamics. Elastic net-
work models, picturing the protein as a network made up of beads connected
by elastic springs provide such a middle-level description. Elastic network
methods are broadly used (see [1, 2]) to study protein dynamics around the
equilibrium conformation (the normal mode analysis). Recently, large confor-
mational motions with nonlinear elastic dynamics have been studied [3] for
two classical motor proteins (myosin and F1-ATPase).

Helicases are generally involved when transient unwinding and separation
of duplex DNA or RNA substrates is needed, in such processes as viral repli-
cation, DNA repair or removal of secondary structures in RNA. The HCV
helicase is not only an important drug target for viral infection treatments,
it is also considered as a characteristic example for a broad class of helicase
motors. Based on experimental studies, the inchworm operation mechanism
of this protein machine has been proposed [4]. According to it, two mobile
domains of the HCV helicase are translocating along the upper strand of
the double DNA, with each translocation step accompanied by binding and
hydrolysis of an ATP molecule. The third domain is attached to the lower
DNA strand. It unzips the DNA, separating the two strands in every third
translocation step, through the accumulation of elastic strains [5]. While some
evidence, supporting the inchworm mechanism and based on single-molecule
experiments, is available [6], its action has never been theoretically described.
We have developed an elastic network model of the molecular motor Hepatitis
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C virus (HCV) helicase and used it to follow, for the �rst time, the entire
operation cycle of this motor and its interaction with DNA molecules.

In the �rst part of our study, responses of HCV helicase to global and local
(near the ATP binding site) conformational perturbations have been deter-
mined in numerical simulations. We have shown that this protein can perform
ordered internal mechanical motions, which are robust against noise and vari-
ations of initial conditions. Essentially, in such motions the protein behaves
as if it were consisting of several rigid domains connected by �exible joints.
These motions are closely related to the soft relaxation mode of the elastic
network of the HCV helicase. They are in agreement with the experimentally
known conformational changes, induced in the protein by ATP binding.

At the next stage, binding of ATP and its hydrolysis have been incorpo-
rated into the elastic network model. The ATP molecule has been modeled as
an additional particle placed inside the ATP binding domain and forming a
number of new links inside it. We could show that conformational motions in
each cycle (consuming one ATP molecule) can lead to an e�ective transloca-
tion by one nucleotide unit along the single DNA strand, in agreement with
experimental �ndings [5]. Monitoring conformational dynamics in the region
of the DNA binding cleft, we could conclude that the protein possesses alter-
nating tight and weak grip states on the nucleotide chain at di�erent parts of
the cleft, as assumed in the proposed inchworm mechanism.

Finally, numerical simulations of interactions between the protein and the
duplex DNA have been performed to verify the DNA unzipping mechanism.
It is assumed that during its progressive translocation along the single strand,
the protein generates the force applied to the complementary strand at the
replication fork. Thus the protein motor should act as a wedge pressed into
the space between the two strands and mechanically separating them. To run
the respective simulations, we have additionally modeled the duplex DNA as
a semi-�exible polymer, with the links that connect the two strands breaking
down when the critical force is applied. We could demonstrate that unzipping
of DNA takes place as the two mobile protein domains are translocating along
its upper strand, powered by the energy brought with the ATP molecules.

In our study, it became possible to realistically follow the entire cycles of
a particular molecular motor � the hepatitis C virus helicase � by using
coarse-grained elastic network models for the protein and similar descriptions
for the DNA molecule. While providing the �rst direct dynamical simulation of
the entire cycles of this speci�c machine, our investigations also demonstrate
how the analysis can be performed for other important molecular motors.
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Self-tuned dynamical criticality and

self-organized statistical criticality together in

an evolving network.

Guillermo Cecci1, Marcelo O. Magnasco2, and Oreste Piro3

1 Computational Biology Center, T.J. Watson IBM Research Laboratory, 1101
Kitchawan Rd., Yorktown Heights, NY USA
2 Laboratory of Mathematical Physics, The Rockefeller University, 10021 New
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3 Departament de Física and IFISC(CSIC-UIB), Universitat de les Illes Balears,
07122 Palma de Mallorca, Spain.

Dynamical systems theory holds that systems of interest should be struc-
turally stable. This would imply that High-order criticality, the simultaneous
presence of several critical features such as Hopf bifurcations, is not expected
to be observed in a natural system. However, not infrequently natural systems
do exhibit such kind of criticality: neuroscience examples include dynamically
critical systems such as line attractors [1] in motor control [2] and decision
making [3], self-tuned Hopf bifurcations in the auditory periphery [4] and ol-
factory system [5], and �regulated criticality� models [6]. There are also many
examples of statistically critical [7] systems with spontaneous heavy-tailed
or scale-free �uctuations, such as neuronal avalanches [8], anomalous correla-
tions in the retina [9, 10] and in functional imaging [11], nonlinear dynamics
models of networked spiking elements, [12,13], etc. There is, however, no real
understanding of the relation between these di�erent concepts of criticality
and although a well-studied physical system displays both statistical [14] and
dynamical (extensive number of zero Lyapunovs [15]), criticality little e�ort
has been devoted to study possible connections.

We present a simple abstract model, an anti-Hebbian [16] network which
spontaneously poises itself at a dynamically critical state: an extensive num-
ber of degrees of freedom approach Hopf bifurcations, becoming arbitrarily
sensitive to external perturbations. As the dynamics controlling this state has
itself a marginal �xed point, the eigenvalues do not converge but �uctuate,
close to the imaginary axis; when they become slightly unstable, the corre-
sponding mode �breaks out� and becomes more prominent, and as they be-
come slightly stable the mode slowly damps out. This breakout dynamics dis-
plays avalanche-like activity bursts whose sizes may be power-law distributed.
Within these epochs the neurons of our model are slightly correlated; yet, as
the number of small but signi�cant correlations is high, the model has strongly
correlated network states [9]. This system is, on the short time-scale, sensitive
in bulk to any outside input, even if applied only to a small subset of the neu-
rons. However, it does not learn � being anti-Hebbian, it constantly forgets.
We can achieve learning by adding another plasticity term �positively� Heb-
bian to directed correlations, i.e., those causal in the sense of Granger [17].
Then the network may learn �predictable� stimuli and will display timing-
dependent synaptic changes reminiscent of spike-timing dependent plasticity
(STDP, [18]).
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Complex network approach for earthquake

science

N. Suzuki
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The seismic data taken from California and Japan are mapped to growing
random networks [1, 2]. Vertices and edges of such networks correspond to
coarse-grained events and event-event correlations, respectively. Yet unknown
microscopic dynamics governing event-event correlations and fault-fault inter-
actions is replaced by these edges. Global physical properties of seismicity can
then be explored by examining its geometric (e.g., topological etc.), statisti-
cal and dynamical properties. Firstly, we show that the earthquake network
is scale free, being characterized by the power-law connectivity distribution
(see Fig. 8.1) [3, 4]. We give a physical interpretation to this result based

Fig. 8.1: The log-log plots of the connectivity distributions of the earthquake net-
works P(k) in California (a) and Japan (b).

on network growth with the preferential attachment rule together with the
Gutenberg-Richter law. Secondly, we study the small-world structure of the
earthquake network reduced to an undirected simple network [4]. The value of
the clustering coe�cient is found to be much larger than that of the classical
random network. In addition, the average path length is very small. Thirdly,
we show that the earthquake network possesses hierarchical organization [5].
We interpret this fact in terms of vertex �tness and vertex deactivation by
the process of stress release at faults. Fourthly, We �nd that the earthquake
network has the property of assortative mixing. This point is an essential dif-
ference of the earthquake network from the Internet that has disassortative
mixing. Finally, we report the discovery of a scale-invariant law of the period
distribution in the directed earthquake network [6], which indicates that after
how many earthquakes an earthquake returns to the initial location. This re-
sult manifests a fundamental di�culty in statistically estimating the value of
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period. Combined with other dynamical properties [7], the present results im-
ply that yet unknown mechanism governing seismicity may be so-called glassy
dynamics on a growing complex network. These observations have obvious im-
portance for constructing and improving physical models of seismicity such as
the ones exhibiting self-organized criticality.
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