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Hyperbolicity and the e�ective dimension of

spatially-extended dissipative systems

Hong-liu Yang1, Kazumasa A. Takeuchi2,3, Francesco Ginelli2,4, Hugues

Chaté2, and Günter Radons1

1 Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz,
Germany, URL: http://www.tu-chemnitz.de/physik/KSND/
2 CEA � Service de Physique de l'État Condensé, CEN Saclay, 91191
Gif-sur-Yvette, France
3 Department of Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033,
Japan
4 Institut des Systémes Complexes de Paris Ile-de-France, 57-59 Rue Lhomond,
75005 Paris, France

Using covariant Lyapunov vectors, we reveal a split of the tangent space of
standard models of one-dimensional dissipative spatiotemporal chaos: a �nite
extensive set of N dynamically entangled vectors with frequent common tan-
gencies describes all the physically relevant dynamics and is hyperbolically
separated from possibly in�nitely many isolated modes representing trivial,
exponentially decaying perturbations. We argue that N can be interpreted as
the number of e�ective degrees of freedom, which has to be taken into account
in numerical integration and control issues.
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Generalized Lyapunov exponent toward a

uni�ed view of dynamical instabilities

T. Akimoto, M. Nakagawa, S. Shinkai, and Y. Aizawa

Department of Applied Physics, Advanced School of Science and Engineering,
Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan.

In statistical mechanics, chaos plays an important role in deriving a stochas-
tic description from the microscopic dynamics [1]. Ergodicity, i.e., the time
average of an observation function equals to its space average, guarantees
an equilibrium state in dynamical systems. Because macroscopic quantities,
which result from the time average of the microscopic observation function,
are almost constant if the microscopic dynamics are ergodic. On the other
hand, macroscopic observables are not constant in non-equilibrium state. In
other words, the time average of observation function in underlying micro-
scopic dynamics needs to be intrinsically random in non-equilibrium state.
However, the foundation of non-equilibrium statistical mechanics on the basis
of the time average has not been studied at all.

In�nite measure systems, dynamical systems with an in�nite invariant
measure, have been attracted much attention to found the non-equilibrium
statistical mechanics [2�6]. The remarkable point in in�nite measure systems
is that the time average of some observation function becomes intrinsically
random [4,7]. To be more precise, the time average of the observation function
converges in distribution, and its distribution depends on the class of the
observation function. This reminds us of a randomness of the time average in
non-equilibrium states.

We have studied the subexponential instability of one-dimensional maps
to investigate the non-equilibrium statistical mechanics on the basis of the
time average. We show that one-dimensional maps with the subexponential
instability have an in�nite invariant measure, where the subexponential in-
stability is characterized as the average of the logarithm of the separation
〈ln∆x(n)/∆x(0)〉. That is, in the subexponential instability, there exists the
sequence an = o(n) such that〈

1
an

n∑
k=0

ln |T ′(xk)|

〉
→ 1 as n→∞,

where 〈·〉 represents the average with respect to an initial ensemble.1

To characterize the subexponential instability, we propose the generalized
Lyapunov exponent for a one-dimensional map as

λ(an) ≡

〈
1
an

n−1∑
k=0

ln |T ′(T kx)|

〉
,

1 Thanks to Aaronson's theorem [7], one can choose the arbitrary initial ensemble
which is absolutely continuous with respect to the Lebesgue measure
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where an is a monotonically increasing sequence. As a result, chaos is classi-
�ed into three di�erent classes: extremely strong chaos, chaos, non-stationary
chaos. As for an ∼ nαL(n),2 we classify chaos as follows:

1. Extremely strong chaos : λ(n) =∞ and λ(an) <∞ for α ≥ 1.
2. Chaos : 0 < λ(n) <∞.
3. Non-stationary chaos : λ(n) = 0 and λ(an) > 0 for some α ≤ 1.

We call (an, λ(an)) Lyapunov pair if there exists an such that 0 < λ(an) <∞.
We will show extremely strong chaos, chaos and non-stationary chaos using
one-dimensional maps.
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2 L(n) is slowly varying at ∞.
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Estimating the Lyapunov Spectrum from Bred

vectors in spatio-temporal chaos

Sarah Hallerberg, Diego Pazó, Juan M. López, and Miguel A. Rodríguez

Instituto de Física de Cantabria (IFCA), E-39005 Santander, Spain

We propose a method to estimate the spectrum of Lyapunov exponents cor-
responding to the most expanding directions using bred vectors. Bred vectors
are stationary �nite �uctuations which are periodically normalized. The most
frequent application of bred vectors are ensemble forecasts for weather pre-
dictions, since their computation is less demanding than the computation of
Lyapunov vectors.

It has been demonstrated that the spatio-temporal dynamics of pertur-
bations in spatially extended chaotic systems can be related to properties of
scale invariant growing surfaces [2�4]. We study now, in the model proposed by
Lorenz in 1996 [5], whether similar scaling properties, can also be observed for
bred vectors. Therefore we use only one bred vector with constant amplitude
ε0 [9] instead of an ensemble of bred vectors and we vary the magnitude of the
perturbation by varying ε0. This method is in more detail described in [6]. If
ε0 is very small, the corresponding bred vector is e�ectively the leading Lya-
punov vector. As ε0 increases, the size of the perturbation increases and the
corresponding perturbed trajectory di�ers signi�cantly from the unperturbed
trajectory.

In analogy to Lyapunov exponents, we can now compute �bred exponents�

λBVm = 1
∆t 〈ln

|δum(x,t+∆t)|
|δu(x,t)| 〉 in order to estimate the Lyapunov spectrum. Note

however, that the indexm of the bred vectors does not correspond to the index
of Lyapunov vectors. More precisely, the index m of the bred vector is not a
discrete, but a continuous index, given by the logarithm of the perturbation
amplitude ε0. In order to estimate the spectrum of Lyapunov exponents we
therefore have to �nd a mapping f : m→ n, which relates a bred vector with
a given logarithmic perturbation amplitude m to the n-th Lyapunov vector.

We obtain such a mapping by constructing a surface hm(x, t) via a Hopf-
Cole transformation

hm(x, t) = ln |δum(x, t)|, with δum(t) = [δum(x, t)]x=Lx=1 . (3.1)

The surface growth formalism allows to identify di�erent universality classes
in spatio-temporal chaotic systems [2]. Especially the universality class of
KPZ (Karda-Parisi-Zhang) has been widely observed in non-Hamiltonian sys-
tems. This holds also for the Lorenz '96 system studied in this contribu-
tion [4]. Consequently, the structure factors S(k) = 〈ĥm(k, t)ĥm(−k, t)〉t, with
ĥm(k, t) =

∑
x exp(ikx)hm(x, t) decay as k−2 as ε0 → 0. For larger values of

the perturbation strength ε0 and small k the structure factors decays signi�-
cantly slower than k−2 up to a certain value kc(m). Thus, the values kc(m),
indicate the crossover between the two di�erent regimes, (�at and k−2) and
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Fig. 3.1: The structure factors S(k) for a Lorenz '96 system of length L = 1024 and
F = 8.0 and varying perturbation amplitudes (left) and the obtained estimate of
the Lyapunov spectrum (right).

represent cut o� lengths lc. Frequencies larger than kc(m) correspond to KPZ-
like structures of sizes smaller than lc.

We can use the estimated values kc(m) in order to relate Lyapunov and
bred exponents via their corresponding cut of lengths lLVc ≈ (L/n)θ, with θ ≈
1 and lBVc = π

kc(m) . We then identify corresponding exponents by identifying

corresponding length scales,

λLVn = λBVm , if lLVc (n) = lBVc (m) (3.2)

As Fig.(3.1) indicates, this method works well for the �rst part of the
spectrum, close to the leading Lyapunov exponent, since the bred vectors
have a piecewise KPZ structure in this regime.
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Low-dimensional Dynamics from

Spatio-Temporal Data: An Approach Based on

Reproducing Kernel Methods

Hiromichi Suetani1,2,3

1 Department of Physics and Astronomy, Graduate School of Science and
Engineering, Kagoshima University, Japan
2 Decoding and Controlling of Brain Information, PRESTO, JST, Japan
3 Flucto-Order Functions Asian Collaboration Team, Advanced Science Institute,
RIKEN, Japan

We propose an approach for re-modeling the time evolution law that describes
low-dimensional dynamics in a high-dimensional state space from simulation
or experimental data. The key of proposed approach is the use of the kernel
methods [1] recently developed in the �led of machine learning. The problem
is formulated as the �nding of optimal nonlinear transformations φ(·) and ψ(·)
such that the correlation coe�cient between φ(x(t)) and ψ(x(t+∆t)), where
x(t) and x(t+∆t) are two adjacent state points of the system, is maximized
from some class of functions (a reproducing kernel Hilbert space: RKHS). This
optimization problem is solved using the kernel canonical correlation analysis
(kernel CCA) [2] which is a version of the kernel methods. It has already been
successfully applied to various problems of pattern recognition, bioinformatics,
and brain science. Recently, it has been also shown that kernel CCA is a
powerful tool for analyzing complex nonlinear dynamics [3]. We present several
examples of ordinary and partial di�erential equations which show that the
proposed method is useful for analyzing low-dimensional motions of high-
dimensional dynamical systems.
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Scaling of singular vectors and �nite-time

Lyapunov exponents in spatiotemporal chaos

D. Pazó, J.M. López, and M.A. Rodríguez

Instituto de Física de Cantabria (IFCA), CSIC�UC, Santander, Spain

Singular vectors (SVs) are currently used in forecasting with operative models,
and are useful in other contexts. For any given dynamical system, an in�nites-
imal perturbation evolves linearly: δu(t + τ) = M(t + τ, t)δu(t). The SV is
de�ned as the perturbation at time t that gets ampli�ed the most at t+τ , and
it satis�es the eigenvalue problem M∗(t+ τ, t)M(t+ τ, t)sτ (t) = µτ (t)sτ (t).

We have studied the SV in two prototypical systems exhibiting spatiotem-
poral chaos [1]: A one-dimensional coupled-map lattice (CML) with logistic
maps f(%) = 4%(1 − %), and the Lorenz 96 model (L96). It is convenient for
our theory to de�ne a �surface" associated with the SV through a logarithmic
transformation:

hτ (x, t) = ln |sτ (x, t)| (5.1)

Figure 5.1(a) shows that, if τ is not too large, hτ exhibits a triangular structure
what implies an exponential localization of the SV.

We have found a minimal Langevin model that allows to understand in
the simplest terms the structure of the SV surface. It is a modi�cation of the
KPZ equation [2] considering a time-periodic noise (PNKPZ):

∂thτ (x, t) = ζτ (x, t) + [∂xhτ (x, t)]2 + ∂xxhτ (x, t), (5.2)

where one simply assumes ζτ to be �white noise" with period τ . The solutions
of (5.2) exhibit a triangular structure like the SV surfaces, see Fig. 5.1(b).

Fig. 5.1: (a) SV surfaces of the CML model for di�erent values of τ . (b) Asymptotic
solutions of the PNKPZ equation for di�erent values of τ .

In both, chaotic systems and PNKPZ, the surface widthW 2
τ (L) = L−1

∑
x hτ (x, t)

2−
[L−1

∑
x hτ (x, t)]

2, satis�es the same scaling:

W 2
τ ∼

{
L2αQC τ−γ (τ � τ×(L))
L2αKP Z (τ � τ×(L))

(5.3)
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Assuming τ×(L) ∼ LzKP Z , we obtain a formula for the exponent γ:

γ =
2(αQC − αKPZ)

zKPZ
. (5.4)

Inserting the critical exponents in one dimension �αKPZ = 1/2 and zKPZ =
3/2 from KPZ [2]; and αQC = 1.07 ± 0.05 from columnar KPZ [3]� we get
γ = 0.76±0.07 in good agreement with the result of our simulations (γ ' 0.78).

It is well known that as the the time horizon τ increases the SV approaches
the (forward) Lyapunov vector. Then, the �nite-time Lyapunov exponent (LE)
�de�ned as λτ (t) = (2τ)−1 lnµτ (t)� approaches the LE: limτ→∞ λτ (t) = λ.
We have found that (see Fig. 5.2):

(λτ − λ) ∼
{
τ−γ (τ � τ×) our result
τ−1 (τ � τ×) known asymptotics

Fig. 5.2: Finite-τ deviation of the Lyapunov exponent for CML (◦) and L96 (4).

References

1. D. Pazó, J.M. López and M.A. Rodríguez, Exponential localization of singular
vectors in spatiotemporal chaos, Phys. Rev. E 79, 036202 (2009).

2. M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986).
3. I. G. Szendro, J. M. López, and M. A. Rodríguez, Phys. Rev. E 76, 011603

(2007).

10 Hilbert Hall Tuesday, 12:00



6

Blow-up analysis of glycolytic relaxation

oscillations

I. Gucwa

Max Planck Institute for Mathematics in the Sciences, Inselstraÿe 22, D-04103
Leipzig, Germany

An interesting feature of many biological processes is that they evolve
on di�erent time scales. Such processes can be modeled by singularly per-
turbed systems of ordinary di�erential equations. Classically such problems
have been analyzed by the method of matched asymptotic expansions. A more
recent powerful approach to singularly perturbed problems, based on meth-
ods from dynamical systems theory, has become known as geometric singular
perturbation theory, see e.g. [2], [4].

In this talk a singularly perturbed planar system modeling oscillatory pat-
terns in glycolysis, so-called glycolytic oscillations, is analyzed. Namely, the
following system is considered

ȧ = a2b2(µ− 1) + µδ2,

εḃ = a2b2(1− b) + δ2(a2b2 − b+ δ2),
(6.1)

where ε plays the role of a singular perturbation parameter and δ is viewed
as a small parameter. The parameter µ does not play an important role in
the analysis, hence we �x it and consider problem (6.1) as a two-parameter
problem with the parameters ε and δ.

System (6.1) with ε small is in the standard form of slow-fast systems with
the slow variable a and the fast variable b. For certain parameter values the
system exhibits a stable limit cycle of relaxation type. For ε = 0 the slow
dynamics is restricted to a critical manifold S de�ned as

S = {(a, b)| a2b2(1− b) + δ2(a2b2 − b+ δ2) = 0}.

For δ > 0 this critical manifold is an N -shaped curve leading to the relaxation
oscillations, i.e. in the limit ε → 0 for �xed δ > 0 the situation is essentially
as in the classical Van der Pol oscillator.

However, the limit ε → 0 for δ �xed is highly non-uniform with respect
to δ, i.e. the shape of the critical manifold S is greatly a�ected by δ. In
particular, for δ = 0 the N -shaped manifold S collapses into a more singular
set de�ned by a2b2(1 − b) = 0 which consists of the lines a = 0, b = 0 and
b = 1. This shows that δ a�ects the geometry of S, while ε plays the role
of a singular perturbation parameter causing the slow-fast structure. These
features motivated much of our interest in the analysis of the case where ε
and δ tend to zero simultaneously.

In a previous work on glycolytic oscillations Segel and Goldbeter [6] applied
the method of scaling to explain the occurrence of the relaxation oscillations.
These authors pointed out that this method was based on the thorough un-
derstanding of the underlying phenomenon. They pose a problem to �nd a
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systematic method based on the mathematical structure of the equations. In
this talk such a method will be presented.

Our geometric singular perturbation approach to the limit (ε, δ) → (0, 0)
complements the study presented in [6] and provides a rigorous analysis of
relaxation oscillations. In particular, the blow-up method pioneered by Du-
mortier and Roussarie [1] in their geometric analysis of canards in the Van
der Pol equations has proven to be very useful in the analysis of singularly
perturbed problems with the degenerate critical manifolds [2], [3], [5].

It turns out that two blow-ups of the δ = 0 degenerate critical manifold
with respect to δ lead to a complete desingularization of the problem such
that uniform results in ε become possible. In this approach the degenerate
lines a = 0 and b = 0 are blown-up to cylinders by rewriting the original
(a, b, δ) variables in suitable cylindrical variables. In the blown-up geometry
the scaling regimes of Segel and Goldbeter are recovered. In addition, a rig-
orous asymptotic matching of these regimes becomes possible.

This is joint work with Peter Szmolyan (Vienna University of Technology).
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Modelling of high-dimension dynamics by

random dynamical systems

D.N. Mukhin, Y.I. Molkov, A.M. Feigin, and E.M. Loskutov

Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova Str.,
Nizhny Novgorod, Russia

Abstract: The majority of natural systems are known to be open, i.e., subject
to numerous external forcings; these forcings can be modeled by random dy-
namical systems (RDS). The RDS present a necessary and important step to-
wards reconstructing the observed systems when their adequate �rst-principle
mathematical models are either unknown or subjected to further veri�cation.
Note that, even for deterministic systems, the construction of a deterministic
model from the observed TS and use of this model for prediction has quite a
number of principal restrictions.First, according to the Takens theorem, the
reconstruction of a phase trajectory is possible in a phase space of su�ciently
high dimension dE > 2dS + 1, where dS is the phase space dimension of the
system that has generated the initial TS. This means that a deterministic dy-
namical system (DDS) describes correctly behavior of the reconstructed sys-
tem in the subspace of dimension dS that is much smaller than the dimension
of the phase space dE of the model. Consequently, the model is not adequate
for the system at relatively small changes of control parameters. The second
restriction is the limitation on prior information. To con�rm determinism of
the observed system one has to ensure that the attractor reconstructed by
the TS has a �nite dimension and to �nd the smallest embedding dimension
for this attractor. The available methods of determining such dimensions are
inapplicable for analysis of the TS generated by real systems. Reconstruction
in the form of RDS (stochastic model) removes these restrictions, thus making
the proposed approach more universal. A basic idea underlying the stochastic
approach is that the robust dynamic properties of the system evolution can
be described by a few equations, while other features may be considered as a
stochastic disturbance. A principal new step here is inclusion of parameter-
ized stochastic perturbation in the model of the evolution operator; it allows
us to signi�cantly expand a class of reconstructed systems. The method of
parameterization of such models on the basis of arti�cial neural networks is
developed, as well as technique of investigation of model parameter space is
suggested. Possibilities of the approach with reference to the analysis of time
series generated by high dimensional dynamic systems are demonstrated by
model examples. In particular, the prediction of changes of characteristics of
observed process is constructed. Possible other applications of the method are
discussed.
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Partially integrable dynamics of populations of

nonidentical oscillators with global nonlinear

coupling

M. Rosenblum and A. Pikovsky

Deptartment of Physics and Astronomy, Potsdam University, Karl-Liebknecht St
24-25, 14476 Potsdam, Germany

We consider oscillator ensembles consisting of subpopulations of identical
units, with a general heterogeneous coupling between subpopulations. Us-
ing the Watanabe-Strogatz (WS) ansatz [1], we reduce the dynamics of the
ensemble to a relatively small number of dynamical variables plus constants
of motion [2]. This reduction is independent of the sizes of subpopulations
and remains valid in the thermodynamic limits. First we apply the theory to
the standard Kuramoto model and make a link to the recent Ott�Antonsen
(OA) ansatz [3]. Next, we use it to describe two interacting subpopulations,
where we generalize the results of [4] and report a novel, quasiperiodic chimera
state. Finally, we use the theory to analyze dynamics of ensembles with global
nonlinear coupling [5, 6]; the main �nding here is multistability of the mean
�eld dynamics.

Our basic model is a generalization of the Kuramoto model: we consider the
ensemble as a hierarchical structure, consisting of subpopulations of identical
units, with a homogeneous coupling within a subpopulation and generally a
heterogeneous coupling between subpopulations. Labelling the subpopulation
with indices a, b we write for the phase of the kth oscillator of the subpopu-
lation a:

dφak
dt

= ωa + Im(Hae
−iφa

k) ,

where Ha is the e�ective force acting on the oscillators of subpopulation a:

Ha =
∑
b

nbEa,brbe
iΘb .

Here complex parameter Ea,b describes the coupling between subpopulations

a, b, na = Na/N are relative population sizes, and rae
iΘa = N−1

a

∑Na

k=1 e
iφa

k

is the complex mean �eld of a-th subpopulation.
We apply the WS ansatz to each subpopulation and in this way reduce its

dynamics to that of three variables plus Na − 3 constants of motion. Next
we perform a thermodynamic limit N → ∞; there are two main ways to do
this. (i) The number of subpopulations M remains �nite, but their sizes grow
N,Na →∞ in a way that na = const. In this limit the ensemble is described
by a set of 3M ODEs. (ii) In another limiting case, we keep the size of each
subpopulation Na �nite but let the number of subpopulations grow,M →∞.
In this way we describe a population with a continuous frequency distribution.

Applying the thermodynamic limit (ii) to the standard Kuramoto model
we derive as a particular case the OA equation [3] for the evolution of the
mean �eld. This equation was obtained in [3] under an assumption of a certain
parametrization of the initial distribution of phases. We demonstrate that this

14 Hilbert Hall Tuesday, 12:45



assumption corresponds to the case of the uniform distribution of constants
of motion in the WS theory. Applying the thermodynamic limit (ii) to the
system of two interacting subpopulations, considered in [4], we obtain a full
description of the system. The equations of [4], based on the OA assumption,
are shown to be a particular case of our equations, which exhibit also novel
solutions, corresponding to quasiperiodic chimera states.

Finally, we apply our formalism to an ensemble with a continuous fre-
quency distribution and homogeneous coupling Ea,b = E. The latter can,
however, depend on the amplitude r of the mean �eld, E = εA(r)eiβ(r) (global
nonlinear coupling, see [5, 6]). For an interesting case of phase nonlinearity
A = 1, β = β0 + ε2r2 we obtain that (i) mean �eld amplitude is not a
monotonically increasing function of ε and (ii) collective dynamics becomes
mulistable: there can coexist several synchronous solutions with di�erent am-
plitudes and frequencies of the mean �eld. Theoretical results are supported
by direct numerical simulation of ensemble dynamics.
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How well can one resolve the state space of a

chaotic map with noise?

Domenico Lippolis and Predrag Cvitanovi¢

Center for Nonlinear Science, School of Physics, Georgia Institute of Technology,
Atlanta, GA 30332-0430

Any physical system su�ers background noise, any numerical prediction su�ers
from computational roundo� errors, and any set of equations models nature
up to a given accuracy, since degrees of freedom are always neglected. The
e�ect of noise on the behavior of a nonlinear dynamical system is a funda-
mental problem in many areas of scienceand the interplay of noise and chaotic
dynamics is of particular current interest The main purpose of our work is to
study an e�ect of noise that has not been addressed in literature: weak noise
limits the attainable resolution of the state space (`phase space') of a chaotic
system. Our task is to develop a method to estimate the �nest possible parti-
tion of the state space, which depends on the nontrivial interplay between the
stretching/contraction of the deterministic dynamics and the smearing e�ect
of noise. As the optimal partition is �nite, Fokker-Planck equations can be
represented by a �nite matrix, whose leading eigenvalue gives a good estimate
of such long-time observables as escape rates, Lyapunov exponents, etc...

The method is here illustrated for a 1d map xn+1 = f(xn) + ξn, where
the ξn are independent Gaussian random variables of mean 0 and variance
2D. We follow a `Fokker-Planck'-type of approach, and work with densities
of trajectories, whose discrete-time dynamics is determined forward by the

Fokker-Planck operator L◦ρn(y) =
∫

dx√
4πD

e−
(y−f(x))2

4D ρn(x) and backward by

its adjoint.
The set of unstable periodic orbits is the `skeleton' of the deterministic dy-

namics, and therefore it can be used to partition the state space into a set of
regions, each region a neighborhood of an unstable periodic point. The num-
ber of periodic orbits grows exponentially with period length, yielding �ner
and �ner partitions, with the neighborhood of each periodic orbit shrinking
exponentially. In the presence of weak noise, we switch to the Fokker-Planck
picture and partition the state space using eigenfunctions (as `noisy periodic
orbits') of the adjoint Fokker-Planck operator, linearized in the neighborhood
of periodic points of the deterministic map. Such eigenfunctions are Gaus-
sians, whose variances represent the balance between noise and deterministic
dynamics. Now, `the best possible of all partitions' is determined by the fol-
lowing algorithm: assign to each periodic point xa a neighborhood of �nite
width [xa−σa, xa+σa]. Consider periodic orbits of increasing period np, and
stop the process of re�ning the state space partition as soon as the adjacent
neighborhoods overlap. In the example shown in �gure 9.1, evolution in one
time-step of all the regions of the optimal partition is compactly summarized
by a transition graph.

Periodic orbit theory [2] expresses the long-time dynamical averages, such
as Lyapunov exponents, escape rates, and correlations, in terms of the leading
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Fig. 9.1: (left) optimal partition of a cubic repeller for 2D=0.002; (right) correspond-
ing transition graph.

eigenvalues of the Fokker-Planck operator L. By means of the optimal parti-
tion, we now have a �nite number of periodic orbits, which the periodic orbit
expansion is supported on. The escape rate of the map is now the leading root
of the determinant of the graph [1]. We then compute the escape rate of the
same map using (a) several deterministic, over-resolved partitions, and (b) a
brute force numerical discretization of the Fokker-Planck operator, which we
take as our reference value. It turns out that the escape rate estimated by
means of the optimal partition is consistent with what found with the brute
force discretization. On the contrary, successive estimates of the escape by
over-resolved expansions appear to converge to a value signi�cantly di�erent
from the `optimal partition' one. We then investigate the range of validity of
the optimal partition method with respect to the noise amplitude, and �nd it
in agreement of at least 2% with the brute force discretization.

Future work includes the extension of the optimal partition method to
non-hyperbolic one-dimensional maps, higher dimensional maps and �ows.
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