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Miscible viscous �ngering in porous media:

in�uence on adsorbed solute dynamics

M. Mishra1, M. Martin2, and A. De Wit1

1 Nonlinear Physical Chemistry Unit, Université Libre de Bruxelles, Brussels,
Belgium
2 PMMH, Ecole Supérieure de Physique et de Chimie Industrielles, Paris, France

Miscible viscous �ngering (VF) is an interfacial �uid �ow instability that oc-
curs when a less viscous �uid displaces another more viscous miscible one in a
porous medium, leading to the formation of �nger like patterns at the interface
of both �uids [1]. VF impacts a variety of practical applications such as oil
recovery, �ltration and hydrology, liquid chromatography, and even medical
applications. In liquid chromatography (LC), which is used to separate the
chemical components of a sample by passing it through a porous medium, VF
can be of concern when the sample solvent has a viscosity di�erent from that
of the displacing �uid [2, 3]. The possible adsorption of solutes or analytes
onto the porous matrix can a�ect their concentration pattern because of this
VF leading to anomalous peak shapes in reversed-phase liquid chromatog-
raphy [4]. Here, we investigate numerically the in�uence of VF due to the
di�erence in sample solvent and displacing �uid viscosities on the evolution
of a solute initially contained in the sample. To do so, we study a three com-
ponent system by considering Darcy's law for the �uid velocity coupled with
a mass-balance equation for the sample solvent and solute concentrations. A
linear isotherm model is used for the adsorption of the passive solute onto the
porous matrix. The in�uence of parameters that control VF and especially of
the retention parameter κ′ is analyzed.

We investigate in particular the conditions for disengagement of the re-
tained solute zone with respect to the sample solvent zone. Density plots of
solute concentration �elds for di�erent retention parameters κ′ are plotted at
successive times in Fig.1.1. VF occurs because the displacing �uid has a lower
viscosity than the sample solvent. If κ′ = 0, the VF pattern of the unretained
solute is the same as that of the solvent (Fig.1.1a). In the presence of adsorp-
tion the retained solute develops �ngering of its distribution zone at either the
rear or frontal interface or on both of them when in contact with the unstable
interfaces of the sample solvent zone (Figs.1.1b-c). This retained analyte zone
disengages rapidly from the sample solvent zone for large values of κ′ giving
then barely no distortion at both interfaces (see Fig.1.1d). These results are
analyzed quantitatively through computation of the various moments of the
concentration distributions [1,2]. The time interval between the onset time of
viscous �ngering e�ects on the analyte plug and the time of saturation (com-
plete disengagement of the sample plug) is decreasing with increasing κ′. So,
the larger κ′, the quicker the separation of both analyte and sample solvent
plugs and the less detrimental the in�uence of VF on the spreading of the
solute. These results are in agreement with recent experimental �ndings in
chromatography [4].
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Fig. 1.1: Evolution of the solute concentration at successive times in a frame moving
at the velocity of the eluent with (a) κ′ = 0, (b) κ′ = 0.3, (c) κ′ = 0.5, (d) κ′ = 1.
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Convection in colloidal suspensions

M. Gläÿl, M. Hilt, and W. Zimmermann

Theoretische Physik, Universität Bayreuth, D-95440 Bayreuth

Thermal convection in colloidal suspensions is described by a generalized con-
tinuum model for binary �uid mixtures, considering additional terms unac-
counted in Boussinesq approximation. Via the Soret e�ect an external tem-
perature gradient induces a gradient of the density of particles.

Depending on the suspended particles this concentration gradient may lead
to spatial variations of the shear viscosity as well as of the thermal conduc-
tivity of the mixture. Both dependencies change the onset and the nonlinear
properties of convection. A density dependent thermal conductivity leads, for
instance, in a certain range of material parameters to a restabilization of the
nonlinear conductive state.

Thermosensitive colloidal particles change their size during the convective
motion from warmer to colder volumes in the cell. We describe this behavior by
introducing a temperature dependent Lewis number and discuss the resulting
e�ects on convection.
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The Rayleigh-Plateau instability on a polymeric

viscoelastic �lament

R. Sattler1, C. Wagner1, and J. Eggers2

1 Experimentalphysik, Universität des Saarlandes, Postfach 151150, 66041
Saarbrücken, Germany
2 School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW
United Kingdom

When a drop falls from a faucet, surface tension drives the �uid motion to-
ward breakup in �nite time, and a drop separates. This pinch-o� occurs in a
localized fashion, and the neighborhood of the point of breakup is described
by a similarity solution [1]. If however very small amounts of high molecular
weight polymer are added, an almost perfectly cylindrical thread is formed
instead. The reason is that wherever there is a local decrease in radius, �uid
elements are stretched, and the polymers along with it. This will increase the
extensional viscosity of the �uid-polymer mixture, and further �ow is inhib-
ited, thus forming a uniform and stable �lament that thins exponentially in
time.

Theoretically, the period of exponential thinning has recently been de-
scribed within a long-wavelength description [2]. Nonetheless, the full three-
dimensional, axisymmetric problem remains unsolved. The e�ect of �nite poly-
mer extensibility has been studied numerically in [3], once more using a long-
wavelength model. The �lament is found to fail near its end via a localized
similarity solution, in contrast to the much more complex scenario found here.

The observations we report here have general validity for a variety of
polymer-solvent systems. Experiments have been performed with polyethylenox-
ide (PEO) in water, PEO in xylol, human saliva, polyacryl-co-acrylicacid in
water-sugar, polysterol in diethyl phthalate and dimethyl furane.

For plug �ow in a cylindrical �lament, the elongation rate is determined
from ε̇ = −2d lnh/dt, thus ε̇ is constant for most of the �lament thinning,
which follows an exponential law. The axial stress σzz supported by the poly-
mers balances the increasing capillary pressure γ/hmin, which means that
the extensional viscosity ηE ≡ σzz/ε̇ = γ/(hminε̇) also increases exponen-
tially. Once ηE has reached a plateau, which we estimate at hmin ≈ 12µm
to be ηE (12µm) ≈ 330Pas, the �lament behaves essentially like a Newto-
nian �uid [3], and is thus subject to a capillary instability [1]. Note that this
value of the extensional viscosity corresponds to an increase by 5 orders of
magnitude over ηwater = 10−3Pas of the solvent.

The linear instability which is shown in Fig. 3.1 evolves when the thinning
process has become to a rest. At �rst, no oscillations are visible on the images
of Fig. 3.1; however, we are able to resolve perturbations down to an amplitude
of A = 80nm, corresponding to signi�cant super-resolution. Over more than a
decade, the growth is very well described by an exponential, providing a clear
signature of a linear instability, which develops uniformly in space.

From a �t to the exponential, we �nd an inverse growth rate of 1/ω = 9.3±
0.1ms. Linear stability of a viscous �uid thread [1] predicts ω = γ/(6R0ηeff ),
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Fig. 3.1: Growth of a sinusoidal instability of the viscoelastic �lament that develops
into a group of droplets on the thinning �lament. The spacing of the pictures is
300−1s.

which gives an estimated extensional viscosity of ηeff = 9Pas ± 2. At the
same time, we are able to �t - as expected [1] - a linear law hmin = −0.44×
10−3m/s∆t in the range 8µm > hmin > 4µm. Comparing to the law hmin =
0.07γ/ηeff∆t for viscous pinching [4], this gives ηeff = 10Pas, which agrees
nicely.

If the polymer concentration was greater than 1000 ppm, the �lament con-
necting two beads never breaks. In other words, the thin �lament must have
formed a (solid) phase di�erent from that of the drops To con�rm this idea,
we produced the Scanning-Electron-Microscopy (SEM) images that allowed
us to estimate the diameter of the �ber as 75− 150nm.
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Spatial forcing in inclined layer convection

S. Weiss1, G. Seiden1, and E. Bodenschatz1,2

1 Max Planck Institute for Dynamic and Self-Organization, D-37073 Göttingen,
Germany
2 Department of Physics, Cornell University, Ithaca, New York 14853-2501, USA

Naturally driven pattern forming systems often contain externally imposed
symmetry breaking mechanisms that a�ect the occuring patterns and their
dynamics. Frost heave phenomena leading to stone-soil separation in alpine
and polar regions or the formation of vegetation stripes on hillsides in arid
areas are just two examples where an anisotropic boundary (i.e. the sloped
ground) determines the observed pattern.

We explore the e�ect of two independent symmetry breaking elements,
imposed on a pattern forming system. As a model, we choose thermal con-
vection, where a thin �uid layer of height d is heated from below and cooled
from above. In a horizontal �uid layer, convection sets in at a critical temper-
ature di�erence ∆Tc. Due to the rotational symmetry of the system, straight
parallel convection rolls emerge that are aligned in an arbitrary direction [1].
Tilting the RBC cell, however, breaks the rotational symmetry, resulting in
a large scale shear �ow. In the resultant inclined layer convection (ILC), the
direction of the convection rolls depends on the inclination angle. For inclina-
tions smaller than a critical angle θc, the buoyancy driven convection rolls are
aligned with their axis parallel to the in-plane gravity component. For θ > θc,
the instability is driven by the shear stress due to the large scale shear �ow,
leading to rolls that are aligned vertical to the gravity component [2].

In addition to the rotational symmetry breaking introduced by inclination,
we impose a second symmetry breaking mechanism in the form of microfabri-
cated 1D periodic surface corrugations of the bottom plate (Fig. 4.1a). Both,
the relative orientation of these corrugations with respect to the inclination
direction (φ in Fig. 4.1a) and the corresponding wave number qf can be var-
ied in the experiment. In addition, by varying the inclination angle θ, and the
reduced temperature di�erence ε = ∆T/∆Tc−1, one can change the intensity
of the large scale shear �ow and thus, tune the relative strength of the two
independent symmetry breaking mechanisms.

In our experiment, we use pressurized CO2 gas in a large aspect ratio
cell. The corresponding Prandtl number of the �uid is Pr=1.30. The �uid
is laterally con�ned by a square cell, aligned with respect to the inclination
direction. The temperature �eld is observed by utilizing the shadowgraph
technique [3].

Due to the spatial periodic forcing, a well-de�ned convection onset can-
not exist anymore. Instead, convection rolls with wave number qf exist for all
positive temperature di�erences ∆T . We focus on the instability of straight
rolls and study the pattern that appear for higher values of ε. Depending on
the forcing scenario, we observe a variety of novel pattern forming processes
ranging from stabilization of spatiotemporal chaos to the emergence of novel
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two-dimensional patterns. We explore the θ − ε phase space and present cor-
responding phase diagrams for φ =0◦, 60◦ and 90◦. For longitudinal forcing
(φ = 0◦), a stabilization of pattern and their dynamics in comparison to the
unforced case is observed. In the transverse (φ = 90◦) and oblique forcing
scenarios (φ = 60◦), the interaction between the intrinsic modes of the system
and the external constraints leads to patterns with a rhombic, an hexago-
nal or a bimodal structure. Particularly interesting are complex superlattice
patterns that occur for large inclination angles (see Fig. 4.1 b and c).

Fig. 4.1: (a) Schematic of the forced inclined layer convection cell. For transverse
forcing (φ = 90◦), novel superlattice patterns where found as e.g. Scepter Pattern
(b) and Heart Pattern (c).
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Computer simulation for Rayleigh-Bernard

instability in �nite container

V.V. Kolmychkov, O.S. Mazhorova, and O.V.Shcheritsa

Keldysh Institute of Applied Mathematics RAS, Moscow

Rayleigh-Benard convection, i.e. convection in a horizontal layer heated from
below, permanently attracts attention of the researchers as a meaty example of
hydrodynamical system in which transition to various types of instabilities can
be studied. When the temperature di�erence between lower and upper plate
is large enough, buoyancy forces lead to the destabilization of the quiescent
state and convection evolves. The �rst stable convection pattern takes the
form of rolls. The strength of buoyancy forces are determined by Rayleigh
number Ra, the size of rolls are described by wave number k. For di�erent
values of Prandtl number stability area of roll structures in the plane (Ra, k)
has been obtained in [1]. Though RB system has been extensively studied both
theoretically and experimentally, there is a lack of quantitative and reliable
comparisons between theory and experiment. The paper deals with numerical
study of the roll structures stability and producing in calculations overriding
types of instabilities theoretically predicted. The process is described by time-
dependent Navier-Stokes in Boussinesq approximation.

At �rst in scope of 2D approach, the region in (Ra, k) plane where rolls
are stable is determined and compared with Busse Balloon [2] to estimate the
e�ect of sidewalls. Numerical results show that the presence of sidewalls, no
matter how distant, substantially restrict the possible wave-numbers which
can occur in the bulk of the system. Near the convective threshold the band
of available wave numbers is reduced to a range |k| ∼ (Ra − Racr)/Racr
instead of a size |k| ∼ [(Ra−Racr)/Racr]1/2 in the in�nite systems. This is
compatible with theoretical data [3].

Then the onset of steady roll convection from initial disturbances is stud-
ied. Three scenarios of the �ow pattern evolution, entitled stable, quasi stable

and roll di�usion, have been registered in calculations. They are described
and discussed both in two and three dimensional cases. Also essentially 3D
�ow pattern evolution has been observed. The calculations show the transi-
tion from unsteady rolls to skewed varicose instability (�g. 5.1), oscillatory
convection and spiral defect chaos (�g. 5.2).

The simulation is performed using the numerical procedure [4] , which
proves it's reliability in calculation of various convective heat and mass trans-
fer problems [5].
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Fig. 5.1: Temperature �eld in the plane z = 0.5 plane. Time evolution of skewed
varicose instability.

Fig. 5.2: Oscillatory convection and spiral defect chaos.
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Phase transition and dynamical properties for

one-dimensional Fermi accelerator models

Edson D. Leonel

Departamento de Matemática � Instituto de Geociências e Ciências Exatas
Universidade Estadual Paulista, Av.24A, 1515 � Bela Vista � CEP: 13506-900 �
Rio Claro � SP � Brazil

The main goal of this seminar is to present and discuss some results for one-
dimensional accelerator models like Fermi-Ulam [1,2] and Bouncer [3,4] mod-
els. We consider both the conservative and dissipative cases and di�erent
external perturbations for the boundary. For the conservative case we charac-
terise some scaling properties of chaotic seas obtaining critical exponents for
the phase transition: integrability to no integrability. For the dissipative case
we show the occurrence of boundary crisis and in particular a phase transi-
tion from limited to unlimited energy growth is characterised in the bouncer
model.
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Fly-wheel model of the hither and thither

motion of a bouncing ball

Gy. Károlyi1, A. Bibó1, and T. Bódai2

1 Department of Structural Mechanics, Budapest University of Technology and
Economics, M¶egyetem rkp. 3., H-1111 Budapest, Hungary
2 Centre for Applied Dynamics Research, School of Engineering, University of
Aberdeen, King's College, AB24 3UE Aberdeen, Scotland, UK

Collisions are very important in many �elds of Nature and Science and have
wide-spread applications in industry. In Nature, the impact of ice particles
are thought to be related to the formation of Saturn's rings, and the single-
particle impacts can play a crucial role in understanding the behaviour of snow
or sand avalanches. In Science, the ergodic behaviour of impacting billiard
systems is supposed to give ideas to describe the stochasticity of gas and
to the Boltzmann hypothesis. In many sports like tennis, golf or baseball it
takes years of practice to achieve the desired bounce of the ball with the
right speed, angle and spin. Applications of impacting bodies include the
use of granular materials in chemical, pharmaceutical, agricultural, mining or
mineral processing industry. In computer simulations of granular materials it
is desirable to have simple, but accurate models of the interaction forces and
impact properties.

In order to construct such models many experimental investigations of
impacts have been carried out. Probably the simplest of these experiments
concern the oblique collision of balls or disks with a planar surface, with or
without initial spin. Parallel with the experimental studies, many models have
been formulated to describe oblique impacts. The early attempts considered
the impacting ball to be rigid. However, such rigid body models are not capable
of describing the observed changes in the direction of the tangential force
acting on the contact surface or reversals of the contact point velocity during
a single impact of a ball, observed most notably in case of solid rubber balls
referred to as �superballs�.

It became clear that the elastic deformations must be taken into account
for a proper modelling of the tangential forces. In principle, the deformable
surface of the impacting ball acts like a �tangential spring� during the collision
with the surface. It is the interplay of the repeated stick and slip and the e�ects
of the elastic deformations that causes the complexity of the oblique impact
of a ball on a �at surface. As a consequence of this, with some practising,
one can throw a ball in such a way, that it �comes back� after the collision
with the surface. The ball has to spin �backwards� to achieve this reversal.
In fact, it is possible to throw a solid rubber ball (e.g. superball) so that in
the �rst few bounces on a �at horizontal surface it always rebounces, that is,
the velocity of its centre of mass and its angular velocity changes direction in
each collisions.

In this paper we address this hither and thither motion of an elastic ball,
and construct a very simple, low-dimensional model that can exhibit a very
similar behaviour. We show that a simple �y-wheel model exhibits the ob-
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served to and fro motion of elastic balls. The suggested model is capable of
describing oblique impacts of spherical bodies, which can be important in
many applications, including dynamical simulation of granular materials. We
�nd that the behaviour of the bouncing �y-wheel is sensitive to the initial con-
ditions, and the escape time plots are used to illustrate this observation and
to discover in which parameter and initial value regions the repeated reversals
are to be expected.
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Theoretical results on the Swinging Atwood

Machine

A. Aparicio Monforte1, S. Simon Estrada2, and J.-A. Weil1

1 Département Maths Informatique, Université de Limoges
XLIM - UMR CNRS n. 6172, 123, avenue Albert Thomas, 87060 Limoges (France)
2 Department of Mathematics, University of Portsmouth
Lion Gate Building, Lion Terrace, Portsmouth PO1 3HF (United Kingdom)

The Swinging Atwood's Machine (SAM) ( [5]) is a compound mechanism
comprising a pulley and a pendulum and linking two point masses, one of
them allowed to swing in a plane. This coupled oscillator, basically a vari-
ation of the well-known Atwood Machine introduced in the late eighteenth
century, exhibits an astonishingly complex behaviour despite its simple phys-
ical description.

Its Hamiltonian formulation depends on whether or not pulleys are as-
sumed to be massive:

• General Hamiltonian: de�ning Mt = M +m+ 2 Ip

R2 , q1 = r, and q2 = θ:

H =
1
2

(
p2
1

Mt
+

(p2 +Rp1)
2

mq21

)
+gq1 (M −m cos (q2))−gR (Mq2 −m sin (q2)) .

• SAM with neglected pulleys: assuming mp = Ip = R and Mt = M +m,

Hw =
1
2

(
p2
1

Mt
+

p2
2

mq21

)
+ gq1 (M −m cos (q2)) .

Some background will be given during the talk on Galois theory of linear
di�erential systems ( [6]) and integrability of Hamiltonian systems ( [3]). The
link between these two disciplines, sometimes called Ziglin-Morales-Ramis the-

ory, is the use of a family of linear systems VE(Γ ) =
{

LVEkΓ : k ∈ N
}
given

by the higher-order variational equations along a given particular solution Γ
of a given system (whether or not Hamiltonian).

Morales' and Ramis' integrablility criterion of can be summed up, in the
Hamiltonian case, in the following :

Theorem 1 (J. Morales-Ruiz & J.-P. Ramis, 2001 [4]). Let H be an

n-degree-of-freedom Hamiltonian having n meromorphic independent �rst in-

tegrals in pairwise involution, de�ned on a neighbourhood of an integral curve

Γ . Then, g := Lie(Gal(V EΓ )) is an abelian algebra, hence the identity com-

ponent Gal(V EΓ )0 is a commutative group.

A recent extension of Theorem 1 by its authors, in an article co-written with
C. Simó:
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Theorem 2. If the previous hypotheses hold, then Gal
(
LVEkΓ

)0

is commu-

tative for all k ≥ 1, and so is Ĝ0, where Ĝ := lim←− Gal
(
LVEkΓ

)
.

The intent behind this talk is to prove the non-integrability of the Hamil-
tonian systems H and Hw modelling SAM, using results from the incipient
framework of Ziglin-Morales-Ramis theory, especially those by Boucher, Weil
and Aparicio. The subsequent recollection of basics in Analytical Mechanics,
Formal Calculus and Di�erential Algebra, as well as a number of alternative
or partial proofs of the same basic result, is assembled into a comprehensive
survey of algorithms (relying on symbolic rather than numerical calculations)
aimed at detecting chaotic behaviour in general potential systems, especially
monodromy matrices of the system's linearised higher variational equations.
Hence, this is an application of Theorem 2, the recent results by Aparicio and
Weil [1] and those by the three authors of the present communication [2].
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