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Computation of the Response Functions of

spiral waves in active media

I.V. Biktasheva1, D. Barkley2, V.N. Biktashev3, G.V. Bordyugov1,4, and
A.J. Foulkes1

1 Dept of Computer Sci, University of Liverpool, Liverpool L69 3BX, UK
2 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
3 Dept of Appl Maths, University of Liverpool, Liverpool L69 7ZL, UK
4 present: Dept of Phys & Astronomy, University of Potsdam, 14476 Potsdam,
Germany

Autowave vortices are types of self-organization observed in dissipative me-
dia of physical, chemical, and biological nature, where wave propagation is
supported by a source of energy stored in the medium.

If slightly perturbed, spiral waves may drift, i.e. change rotational phase
and/or center location. The response functions (RFs) of a spiral wave are the
eigenfunctions of the adjoint linearized operator corresponding to the critical
eigenvalues λ = 0,±iω. The RFs describe the spiral's sensitivity to small
perturbations in the way that a spiral is insensitive to small perturbations
where its RFs are close to zero. The velocity of a spiral's drift is proportional
to the convolution of RFs with the perturbation.

Thus, an explicit knowledge of the Response Functions makes possible a
quantitative prediction of the drift in numerous applications, e.g. control of
re-entry in the heart. Biktasheva et al. [2] computed the RFs in the complex
Ginzburg-Landau equation (CGLE) using an additional symmetry present in
the CGLE, which permitted the reduction of the 2D problem to the computa-
tion of 1D components. It was shown that in the CGLE the RFs are localized
at the tip of the spiral for all stable spiral wave solutions and qualitatively
change at crossing the charachteristic lines in the model parameter plane. Sub-
sequently, the computed RFs were successfully used for quantitative prediction
of the spiral's resonant drift and drift due to media inhomogeneity [3].

For cardiac applications, dynamics of spiral waves in excitable media is
more important than in oscillatory media such as the CGLE, as most car-
diac tissues are excitable. These models do not allow reduction to 1D, making
quantitatively accurate computation of the response functions more challeng-
ing. So far, the response functions have been computed in the Barkley [4, 5]
and FitzHugh-Nagumo [6] models of excitable media. Hamm [4] and Bikta-
sheva et al. [6] calculated RFs on Cartesian grids, but the accuracy was not
su�cient for quantitative prediction of drift. Hakim and Henry [5] took the
advantage of a polar grid and Barkley model to compute the spiral wave solu-
tion with an accuracy of 10−8 and RFs with accuracy 10−6 (both in the sense
of l2-norm of the residue of the discretized equations) leading to quantitative
prediction of drift velocities with about 4% accuracy. Encouraging as these
results are, there is a need for a more computationally e�cient, accurate and
robust method to compute the response functions of spiral waves in a variety
of excitable media with required accuracy.
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Here [1] we present a method which is superior to previous methods used to
compute response functions, and demonstrate that it works for stationary ro-
tating spirals in FitzHugh-Nagumo system. We also demonstrate convergence
of the method with respect to the computational parameters, i.e. discretiza-
tion steps and size of the medium.

The computed response functions are localized in the vicinity of the spiral
wave tip and exponentially decay with distance from it. The eigenvectors of the
linearized operator, i.e. Goldstone modes and of its adjoint, i.e. the response
functions have been computed using the same technique, so the qualitatively
di�erent behavior of these solutions at large ρ is not a numerical artefact, as
it was not in any way assumed in the numerical method.

Although the method has been used here to compute the response func-
tions in the FitzHugh-Nagumo model, none of the details of the method de-
pends on any speci�cs of the particular reaction kinetics and should be widely
applicable to the computation of response functions of rigidly rotating waves
in any other model of excitable tissue, as long as its right-hand sides are con-
tinuously di�erentiable so the linarized theory is applicable. Moreover, the
method can also be extended in a straightforward way to include additional
e�ects, such as the e�ect of uniform twist along scroll waves with linear �la-
ments in three dimensions.
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Control of Spiral Wave Activity in
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Life-threatening cardiac arrhythmias are associated with the existence of sta-
ble and unstable spiral waves. Termination of such complex spatio-temporal
patterns by local control is substantially limited by anchoring of spiral waves
at natural heterogeneities. Far �eld pacing (FFP) is a new local control strat-
egy that has been shown to be capable of unpinning waves from obstacles.
Compared to a di�erent local control strategy known as anti-tachycardia pac-
ing (ATP), the superiority of FFP in unpinning spirals from obstacles (as an
important step towards their removal) has been shown by numerical simula-
tions in a previous study (Figures 3 and 5 in [2]).
In the present study, we investigate in detail the FFP unpinning mechanism
in the Barkley model [1] for a single rotating wave pinned to a circular hetero-
geneity. We identify qualitatively di�erent phase regimes of the rotating wave
(Figure 2.1) showing that the concept of vulnerability is important but not
su�cient to explain the failure of unpinning in all cases. Speci�cally, we �nd
that a reduced excitation threshold can lead to the failure of unpinning even
inside the vulnerable window, as de�ned in [4]. The critical value of the exci-
tation threshold (below which no unpinning is possible) decreases for higher
electric �eld strengths and larger obstacles. In some phase regimes, we also
observe phase resetting of the spiral wave. This e�ect is important for the
application of multiple stimuli in experiments.

We demonstrate that in the Barkley model the vanishing unpinning win-
dow e�ect is a fundamental limitation of FFP. A comparison with the well-
known vulnerable window reveals that this is a genuinely two-dimensional
e�ect. We �nd that spiral waves detach from the obstacle when the stimulus
is inside the vulnerable window but that they can reattach after a short time if
the stimulus is outside the unpinning window. The one-dimensional view that
is generally taken cannot account for the interaction of the detached vortex
with the refractory tail of the spiral wave. Not unexpectedly, in addition, we
�nd that higher �eld strengths and bigger obstacles extend the range of ex-
citability thresholds in which unpinning is possible and widen the unpinning
window ρuw. The results are currently being published [3].
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Fig. 2.1: Schematic structure of the unpinning window, viewed in the phase interval
[0,1] (normalized position of the spiral on the circular obstacle boundary). The
unpinning window ρuw is contained in the vulnerable window ρvw but does not
necessarily span its whole width. A�E mark di�erent FFP pulse times. A leads to
no phase resetting, whereas B, D and E cause the phase to reset. C corresponds to
successful unpinning.
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Validation of e�ective medium theory for

heterogeneous reaction-di�usion media

Sergio Alonso1, Raymond Kapral2, and Markus Bär1

1 Physikalisch-Technische Bundesanstalt, Berlin, Germany
2 Department of Chemistry, University of Toronto, Toronto, Canada

Fronts and pulses are typical travelling structures generated by reaction-
di�usion processes. They are observed in chemical and biological media outside
of equilibrium [1]. Reaction-di�usion systems can generate more complicated
structures depending on the initial condition.

It is di�cult to prevent heterogenities and deformations in experimental
systems. These inhomogeneities modify the properties of such systems. It is
also interesting to introduce arti�cial heterogeneities in a controlled fashion
into the system to study their e�ects on wave propagation. Examples of het-
erogeneous reaction-di�usion sytems are the Belousov-Zhabotinsky reaction
in oil microemulsions of water droplets [2] and the propagation of action po-
tentials through cardiac tissue [3].

Fig. 3.1: Snapshots of bistable fronts (bright region) propagating from left to right
in 2D (left column) and 3D (right column) heterogeneous media. Time evolution
goes from top to bottom.

The small scale of the heterogeneities usually allows an e�ective descrip-
tion of the inhomogeneous system. Speci�c homogenization theories have been
already suggested, but we propose a general e�ective medium theory based
on the homogeneization of reaction-di�usion systems [4]. We consider a sys-
tem where domains of phase 2 (heterogeneities) are randomly dispersed in a
medium of phase 1. The reactivity and di�usion of the reactants take di�erent
values if they are inside or outside of such domains. If the heterogeneities are
small, we can calculate e�ective values for the di�usion and the reactivity.

Here, we calculate the velocity of a front (see Fig 3.1) in a reaction-di�usion
system under the presence of static obstacles. We obtain di�erent results de-
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pending on the type of the heterogeneities. We compare numerical results
obtained with di�erent types of obstacles with the predictions of the e�ective
homogeneous medium theory [5].

The results can be applied to chemical and biological heterogeneous
reaction-di�usion systems. We will �nally discuss the applicability of the ef-
fective medium theory to dynamical evolution of the domains.
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Dordrecht, 1994).

2. V. K. Vanag and I. R. Epstein, Phys. Rev. Lett. 87, 228301 (2001).
3. A. V. Pan�lov, Phys. Rev. Lett. 88, 118101 (2002).
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Control of spatio-temporal patterns in the

Gray-Scott system

Y.N. Kyrychko1, K.B. Blyuss1, S.J. Hogan1, and E. Schöll2

1Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1TR,
UK
2 Institute für Theoretische Physik, TU Berlin, 10623 Berlin, Germany

In this talk I will present a systematic study of the e�ects of local time-
delayed feedback control (TDFC) [1] on spatio-temporal dynamics in a two-
component reaction-di�usion Gray-Scott model. It has already been shown
using extensive numerical simulations that the Gray-Scott model supports a
wide range of spatio-temporal dynamics, including stationary inhomogeneous
patterns, travelling fronts and pulses, as well as spatio-temporal chaos. A
particular feature of this system, which makes it di�erent from other reaction-
di�usion models, is the occurrence of pulse-splitting, where a travelling pulse
leaves in its wake other pulses propagating in di�erent directions.

The Gray-Scott system can be written as [2]

∂u

∂t
= −uv2 + a(1− u) +Du∇2u = f(u, v) +Du∇2u,

∂v

∂t
= uv2 − (a+ b)v +Dv∇2v = g(u, v) +Dv∇2v,

(4.1)

where u and v are the concentrations of the species U and V , respectively, a
is the in�ow rate, a + b is the removal rate of V from the reaction, and Du

and Dv are the di�usion coe�cients of the two species.
Formally, the locally controlled Gray-Scott model can be written as

∂

∂t

(
u
v

)
=
(
f(u, v)
g(u, v)

)
+
(
Du 0
0 Dv

)
∇2

(
u
v

)
+KA

(
u(t− τ)− u(t)
v(t− τ)− v(t)

)
,

where K is the control strength which can be either positive or negative, τ > 0
is the time delay.

The results of the numerical simulations of the Gray-Scott model (4.1)
using the TDFC are presented in the Figures 4.1 and 4.2. They show that
local TDFC can provide a variety of interesting dynamical regimes, from sta-
tionary patterns to mixed modes and travelling localized pulses. Numerical
simulations suggest that in many cases the control strength does not have to
be very high, provided time-delay is large enough.

References
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Fig. 4.1: Control domain of spatio-temporal chaos. (a) Activator control. (b) In-
hibitor control. (c) Phase diagram for non-diagonal control. Colour denotes a spe-
ci�c �nal state: spatio-temporal chaos (black), stable mixed (Turing-Hopf) state
(pink), coarsening (green), bi-stability between travelling waves and a trivial steady
state (red) and a uniform non-trivial steady state (yellow). Parameter values are
a = 0.028, b = 0.053, Du = 2 · 10−5, Dv = 10−5.

Fig. 4.2: Space-time plot in the case of inhibitor control. (a) Spatio-temporal chaos.
(b) Mixed (Turing-Hopf) mode. (c) Coarsening. (d) Transition to travelling waves.
Parameter values are a = 0.028, b = 0.053,Du = 2·10−5,Dv = 10−5, (a)K = −0.05,
τ = 0.3, (b) K = −0.3, τ = 0.35, (c) K = −0.4, τ = 0.4 and (d) K = −0.6, τ = 0.75.
Control is switched on at t = 3000.
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Statistical Analysis of Heteroclinic Turbulence

in Di�usion Lotka-Volterra Equation

Kenji Orihashi and Yoji Aizawa

Department of Applied Physics, Waseda University, Tokyo, Japan
e-mail: orihashi-1026@aoni.waseda.jp

In mathematical biology, the di�usion Lotka-Volterra equation has been stud-
ied to analyze population dynamics, and many studies have been performed
[1]- [8]. In particular, the traveling wave [6,7] and the spatio-temporal chaos [8]
are studied. So the behavior of the equation has attracted many attention. A
heteroclinic cycle is a topological circle connecting several equilibrium points
in phase space. And in some case, a turbulence is generated by the inter-
action between the heteroclinic cycle and the di�usion e�ect, for instance,
the Lotka-Volterra system [8] ,the replicator equation [9] and the Gray-Scott
model [10].

Let us consider the following competitive Lotka-Volterra reaction di�usion
equation: 

∂Y1

∂t
= Y1(1− Y1 − αY2 − βY3) +

∂2Y1

∂r2
,

∂Y2

∂t
= Y2(1− βY1 − Y2 − αY3) +

∂2Y2

∂r2
,

∂Y3

∂t
= Y3(1− αY1 − βY2 − Y3) +

∂2Y3

∂r2
,

(5.1)

(0 ≤ Yi(r, t), [0 ≤ r ≤ L])

where Yi = Yi(r, t) is the population of the ith species (i = 1, 2, 3), α and
β are positive parameters, and L is the system size. We assume the spacial
dimension to be unity and the boundary condition to be periodic, and the
interaction matrix is a cyclic one (May-Leonard type). α, β, and L are bifur-
cation parameters of Eq. (5.1).

First, the bifurcation diagrams of (α, β) for several L are demonstrated
in detail, and it is emphasized that the diversity of the attractor enhances
when the system size increases. When L is small, only two spatially uniform
solutions exist. When L is large, not only two spatially uniform solutions but
also turbulence and traveling wave are observed. Next, the transition from
a regular attractor to a turbulent one is characterized by correlation length
and time, as well as by Lyapunov exponent and Lyapunov dimension. For
these characteristics, the scaling relations are observed. And comparing to the
case of di�usion replicator equation [9], the similarity points and the di�erent
points between the two equations are reported. Finally, the onset mechanism
of the turbulence are theoretically discussed by using the phase reduction
method.
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Fig. 5.1: Snap shots of Y1(r, t); (a) for the turbulence (α = 0.1, β = 2.6), and (b)
for the traveling wave (α = 0.1, β = 5.8). Three-dim. embedding plots of those snap
shots are shown (c) and (d).
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On data assimilation through variational

calculus

J. Bröcker and I. G. Szendro Terán

Max-Planck Institut für Physik komplexer Systeme
Nöthnitzer Strasse 38
01187 Dresden
Germany

Time series are often assumed to arise as observations from an underlying
dynamical system. The observations though need not be one�to�one map-
pings of the full state of the underlying dynamical system, which is thus only
partially observed. Both for the purpose of analyzing such systems as well
as forecasting future observations, it is usually necessary to compute trajec-
tories which are on the one hand consistent with some proposed model of
the dynamics, but which on the other hand closely follow (or `shadow') the
recent history of observations. This process (referred to as data assimilation
in the atmospheric sciences or smoothing in the engineering community) is
revisited in this contribution. As currently employed (for example in weather
forecasting), variational methods meet with the fundamental di�culty that
the corresponding normal equations are ill�posed. For this reason, only very
short observation windows can be taken into account. In this contribution,
an approach to data assimilation using concepts from nonlinear control the-
ory will be presented. The model dynamics are augmented by a control force,
which is chosen so as to make the discrepancy between the trajectory and
the actual observations, the tracking error, small. At the same time, large
control actions are penalized as well, in order to create trajectories which are
as consistent with the (uncontrolled) model dynamics as possible. Provided
there is no model error, the control is expected to vanish once the dynamics is
�on track�. In the presence of model error though, a small but non-vanishing
control will remain necessary to keep the trajectory close to the observations.
It is demonstrated that this approach provides an e�ective means to regu-
larize the problem, and to control the trade-o� between perfectly following
the observations and perfectly obeying the model dynamics. Furthermore, an
ex�post analysis of the control forces should provide information on model
imperfections.
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Pattern formation and chaotic dynamics in a

cross-�ow catalytic TWC reactors

M. Kohout1, O. Hada£1, J. Havlica2, and I. Schreiber1

1 Department of Chemical Engineering, Center for Nonlinear Dynamics of
Chemical and Biological Systems, Institute of Chemical Technology, Prague,
Technická 5, 166 28 Prague 6, Czech Republic, email: Martin.Kohout@vscht.cz
2 Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech
Republic, Rozvojová 135, 165 02 Prague 6, Czech Republic

Dynamics of models describing catalytic oxidation of CO and C2H2 and re-
duction of NOx taking place in a cross-�ow tubular reactor are examined.

We begin with a detailed kinetic model proposed for three-way catalytic
converters. In an e�ort to relate resulting patterns to speci�c pathways in the
mechanism we select two reaction subsystems combining CO oxidation with
oxidation of C2H2 and with NOx reduction. The ability of these two subsys-
tems to generate nonlinear dynamical e�ects is examined �rst by neglecting
transport phenomena and studying a lumped (CSTR) system with the use of
stoichiometric network and bifurcation analysis.

(a) (b)

Fig. 7.1: The space-time plot of spatiotemporal chaotic pattern in reaction�di�usion
convection system in a TWC; the inlet oxygen concentration (a) � yin

O2 = 0.535 mol.
% and the temperature T in = 490.0 K, (b) � yin

O2 = 0.50 mol. % and T in = 496.0 K.

Spatiotemporal behavior due to reaction kinetics combined with transport
processes have been further studied in tubular reactor with cross-�ow (TFR).
Based on knowledge of the lumped dynamics, the observed spatiotemporal
patterns are classi�ed as phase waves, travelling front and pulse waves and
chaotic spatiotemporal patterns (see Fig. 7.1). Their dependence on input
parameters are systematically studied and their relation to di�erent unstable
reaction pathways is discussed.
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Pattern dynamics in thin free-standing smectic

�lms

K. Harth, C. Bohley, A. Eremin, and R. Stannarius

Otto von Guericke University Magdeburg, Institute of Experimental Physics

Free-standing �lms of thermotropic smectic tilted phases (smC, smC*) rep-
resent the simplest quasi two-dimensional anisotropic liquids. Distortions of
the local tilt-azimuth orientation of the mesogens (c-director) generate elastic
forces and torques. By studying director structures in external electric �elds
and their free relaxation from non-equilibrium states of the elastic energy one
can explore the coupling between orientation and �ow �elds in the �lms. Such
coupling e�ects represent unique features of anisotropic liquids.

Fig. 8.1: Target(left) and spiral (right) pattern of a freely suspended smectic C∗

�lm (the �lm width is 3 mm) under slightly decrossed polarizers. The dark dots are
tracer particles for the visualisation of the �ow �elds.

Experiments are performed with a polarised light microscope. We prepare
simple director states by means of external electric �elds, for example those
appearing as targets or spirals (Fig. 8.1), and study the temporal texture
evolution. The dynamics of the c-director is extracted from these textures.
Simultaneously, we visualise the in-plane �ow with small probe particles. It is
demonstrated that macroscopic �ow patterns can be generated by inhomoge-
neous director relaxation.

The dynamic equations - incompressible anisotropic Navier-Stokes equa-
tion and torque balance equation - are solved numerically with standard �nite
element methods (COMSOL). The calculated �ow �elds and director relax-
ation characteristics are utilised to extract information on the �ve involved
viscosities and two elastic constants of the liquid crystalline material.

Experiments with �lms that contain inclusions (droplets or solid parti-
cles) widen the opportunities to access elastic properties and allow to observe
a variety of pattern forming phenomena. In addition to the standard splay
and bend elastic constants, a spontaneous bend elastic term is allowed by
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symmetry in chiral phases. Even though the involved free energy term can be
transformed into a surface integral by the Stokes integral theorem, so that the
bulk equations are not in�uenced by it, we can demonstrate a geometry where
the spontaneous bend takes e�ect: The director �eld around inclusions with
rigid anchoring depends upon the spontaneous bend (Fig. 8.2). The observed
textures allow to determine the respective elastic constant quantitatively.

Fig. 8.2: Isotropic liquid droplet in a freely suspended �lm. The c-director is anchored
tangentially at the �lm boundaries, two defects of strength 1/2 appear at the droplet
boundaries. Their arrangement can be symmetrical on opposite sides of the droplet,
so-called quadrupolar con�guration (left image), or shifted towards one side of the
droplet by the e�ect of the spontaneous bend term, so-called dipolar con�guration
(right image).

Inclusions in free-standing smectic �lms can be considered as very simple
and conveniently handled model systems for two-dimensional colloids. We
discuss several topological interactions mediated by the director �eld and self-
organisation of inclusions into chains and lattices [2].
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The stoichiometric networks analysis [1, 2] provides a natural way of decom-
posing the entire chemical network into elemental subnetworks. This method-
ology also identi�es those among them that are possible sources of complex
dynamical behaviour [3]. Identi�cation of the unique set of systematically in-
dependent subnetworks (reaction pathways or currents) called extreme path-
ways/currents is the main goal of this contribution. In geometrical terms, the
extreme currents represent the edges of the steady-state �ux cone. The steady-
state �ux cone is the space of all admissible (i.e. non-negative) rate vectors
that is the a�ne linear subspace. A polynomial di�erential system describes
the behaviour of a chemical network with generalized mass action kinetics.
This sparse polynomial system is de�ned by a weighted directed graph and a
weighted bipartite graph [4]. In this application, the number of real positive
solutions within certain a�ne subspaces is of particular interest. In general,
the positive steady states of chemical reaction systems are strongly determined
by the properties of the two graphs. In the stoichiometric network analysis the
set of steady-state solutions is considered as a convex polyhedral cone. We use
an e�cient algorithm that determines the set of extreme currents suitable for
both homogeneous and heterogeneous catalytic systems. The algorithm [5] is
pathway-oriented due to the reduction of combinatorial possibilities of choice
of the reactions.
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