DCF Publikationen

Publikationen von Michael Wilczek

Zeitschriftenartikel (61)

1.
Zeitschriftenartikel
Schröder, M.; Bätge, T.; Bodenschatz, E.; Wilczek, M.; Bagheri, G.: Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time. Atmospheric Measurement Techniques 17 (2), S. 627 - 657 (2024)
2.
Zeitschriftenartikel
Zierenberg, J.; Spitzner, F. P.; Dehning, J.; Priesemann, V.; Weigel, M.; Wilczek, M.: How contact patterns destabilize and modulate epidemic outbreaks. New Journal of Physics 25, 053033 (2023)
3.
Zeitschriftenartikel
Fragkopoulos, A. A.; Vachier, J.; Frey, J.; le Menn, F.-M.; Wilczek, M.; Mazza, M.; Bäumchen, O.: Light controls motility and phase separation of photosynthetic microbes. arXiv, (submitted) (2022)
4.
Zeitschriftenartikel
Fleig, P.; Kramar, M.; Wilczek, M.; Alim, K.: Emergence of behaviour in a self-organized living matter network. eLife 11, e62863 (2022)
5.
Zeitschriftenartikel
Arguedas-Leiva, J. A.; Carroll, E.; Biferale, L.; Wilczek, M.; Bustamante, M. D.: Minimal phase-coupling model for intermittency in turbulent systems. Physical Review Research 4, L032035 (2022)
6.
Zeitschriftenartikel
Arguedas-Leiva, J. A.; Słomka, J.; Lalescu, C. C.; Stocker, R.; Wilczek, M.: Elongation enhances encounter rates between phytoplankton in turbulence. Proceedings of the National Academy of Sciences 119 (32), e2203191119 (2022)
7.
Zeitschriftenartikel
Bentkamp, L.; Drivas, T. D.; Lalescu, C. C.; Wilczek, M.: The statistical geometry of material loops in turbulence. Nature Communications 13, 2088 (2022)
8.
Zeitschriftenartikel
Carbone, M.; Wilczek, M.: Only two Betchov homogeneity constraints exist for isotropic turbulence. Journal of Fluid Mechanics 948, R2 (2022)
9.
Zeitschriftenartikel
Kreienkamp, K. L.; Wilczek, M.: Modeling probability density functions of velocity fluctuations in wind farms. Wind Energy 2022, S. 1 - 13 (2022)
10.
Zeitschriftenartikel
Lalescu, C. C.; Bramas, B.; Rampp, M.; Wilczek, M.: An Efficient Particle Tracking Algorithm for Large-Scale Parallel Pseudo-Spectral Simulations of Turbulence. Computer Physics Communications 278, 108406 (2022)
11.
Zeitschriftenartikel
Bätge, T.; Wilczek, M.: Small-scale averaging coarse-grains passive scalar turbulence. Physical Review Fluids 6, 064503 (2021)
12.
Zeitschriftenartikel
Contreras, S.; Dehning, J.; Loidolt, M.; Zierenberg, J.; Spitzner, F. P.; Urrea-Quintero, J. H.; Mohr, S. B.; Wilczek, M.; Wibral, M.; Priesemann, V.: The challenges of containing SARS-CoV-2 via test-trace-and-isolate. Nature Communications 12, 378 (2021)
13.
Zeitschriftenartikel
Fragkopoulos, A. A.; Vachier, J.; Frey, J.; le Menn, F.-M.; Mazza, M. G.; Wilczek, M.; Zwicker, D.; Bäumchen, O.: Self-generated oxygen gradients control collective aggregation of photosynthetic microbes. Journal of The Royal Society Interface 18, 20210553 (2021)
14.
Zeitschriftenartikel
James, M.; Suchla, D. A.; Dunkel, J.; Wilczek, M.: Emergence and melting of active vortex crystals. Nature Communications 12, 5630 (2021)
15.
Zeitschriftenartikel
Koch, C.-M.; Wilczek, M.: Role of Advective Inertia in Active Nematic Turbulence. Physical Review Letters 127, 268005 (2021)
16.
Zeitschriftenartikel
Lalescu, C. C.; Wilczek, M.: Transitions of turbulent superstructures in generalized Kolmogorov flow. Physical Review Research 3 (2), L022010 (2021)
17.
Zeitschriftenartikel
Pujara, N.; Arguedas-Leiva, J. A.; Lalescu, C. C.; Bramas, B.; Wilczek, M.: Shape- and scale-dependent coupling between spheroids and velocity gradients in turbulence. Journal of Fluid Mechanics 922, R6 (2021)
18.
Zeitschriftenartikel
Sinhuber, M.; Friedrich, J.; Grauer, R.; Wilczek, M.: Multi-level stochastic refinement for complex time series and fields: a data-driven approach. New Journal of Physics 23, 063063 (2021)
19.
Zeitschriftenartikel
Wilczek, M.; Heidenreich, S.; Bär, M.: Die Physik aktiver Fluide. Physik Journal 20 (12), S. 35 - 40 (2021)
20.
Zeitschriftenartikel
Dehning, J.; Zierenberg, J.; Spitzner, F. P.; Wibral, M.; Pinheiro Neto, J.; Wilczek, M.; Priesemann, V.: Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science 369, eabb9789 (2020)
Zur Redakteursansicht