DCF Project Partners

Using droplet-based microfluidics we investigate the dynamics of micro- and nanostructures in two-phase fluids, from the organisation of amphiphilic molecules at interfaces to droplet stability, motion and actuation in microchannels.

Micro- and nanostructures in two-phase fluids - Jean-Christophe Baret

Using droplet-based microfluidics we investigate the dynamics of micro- and nanostructures in two-phase fluids, from the organisation of amphiphilic molecules at interfaces to droplet stability, motion and actuation in microchannels.
[more]
Wetting of complex surface geometries can be observed in a variety of biological systems as well as in industrial processes and applications. The most prominent example are the water repelling leaf of the Lotus plant. The pore space of sand stone filled with a mixture of mineral oil and water can be viewed as wetting of a random surface geometry, too.

Theory of wet random assemblies - Martin Brinkmann

Wetting of complex surface geometries can be observed in a variety of biological systems as well as in industrial processes and applications. The most prominent example are the water repelling leaf of the Lotus plant. The pore space of sand stone filled with a mixture of mineral oil and water can be viewed as wetting of a random surface geometry, too.
[more]
On a liquid water micro-jet in vacuum the chemistry of aqueous solutions is studied by photoelectron spectroscopy with soft x-ray synchrotron radiation from BESSY. In cooperation with several theoretical and experimental groups, current studies include surface activity and alignment of molecular anions, electronic levels of solvated individual ions of transition metals, and of DNA in liquid water solution.

Spectroscopy of aqueous surfaces - Manfred Faubel

On a liquid water micro-jet in vacuum the chemistry of aqueous solutions is studied by photoelectron spectroscopy with soft x-ray synchrotron radiation from BESSY. In cooperation with several theoretical and experimental groups, current studies include surface activity and alignment of molecular anions, electronic levels of solvated individual ions of transition metals, and of DNA in liquid water solution.
[more]
This group aims to understand the solidification of complex fluids including soils and colloids. How do they freeze, or dry? How do they crack, change, order, or fail? Much of the work is inspired by simple geophysical patterns, such as mud cracks. We seek to understand how such patterns form, and what they imply about their host environment.

Pattern formation in the geosciences - Lucas Goehring

This group aims to understand the solidification of complex fluids including soils and colloids. How do they freeze, or dry? How do they crack, change, order, or fail? Much of the work is inspired by simple geophysical patterns, such as mud cracks. We seek to understand how such patterns form, and what they imply about their host environment.
[more]
Today we can manipulate matter down to the atomic scale and this ability allows us to control and explore the rich and still vastly unknown features of systems away from equilibrium. In this group we employ computer simulations to understand the behavior of complex liquids and nonequilibrium systems. Our main goal is to identify the driving mechanisms of matter organization.

Nonequilibrium soft matter - Marco G. Mazza

Today we can manipulate matter down to the atomic scale and this ability allows us to control and explore the rich and still vastly unknown features of systems away from equilibrium. In this group we employ computer simulations to understand the behavior of complex liquids and nonequilibrium systems. Our main goal is to identify the driving mechanisms of matter organization.
[more]
Granular media like sand, sugar or snow can exhibit physical properties similar to those of ordinary solids, liquids and sometimes even glasses. However, due to their dissipative interactions and their geometrical constraints a new type of statistical mechanics is needed to describe them.

Statistical mechanics of granular media - Matthias Schröter

Granular media like sand, sugar or snow can exhibit physical properties similar to those of ordinary solids, liquids and sometimes even glasses. However, due to their dissipative interactions and their geometrical constraints a new type of statistical mechanics is needed to describe them.
[more]
We are currently working on three topics:

Discrete microfluidics
Wet granular media and muliphase flow in porous media
Wetting of viscoelastic and topographically structured surfaces

Geometry of fluid interfaces - Ralf Seemann

We are currently working on three topics:
  • Discrete microfluidics
  • Wet granular media and muliphase flow in porous media
  • Wetting of viscoelastic and topographically structured surfaces
[more]
We aim towards a fundamental understanding of the structure and dynamics of complex networks in physics and biology as well as engineered and social networks. We focus on computation in and control of networked systems, particularly neural circuits and power grids; moreover, the inference of network structures as well as their optimal design constitute basic research questions. We often develop mathematical tools required for understanding these highly complex systems. The Network Dynamics team works on foundations and applications in the areas of computational neuroscience, computer science, statistical physics of disordered systems, artificial neural networks and robotics, and, more recently, gene evolution and power grids and, most recently, complex human interaction networks.

Network Dynamics (Prof. Dr. Marc Timme)

We aim towards a fundamental understanding of the structure and dynamics of complex networks in physics and biology as well as engineered and social networks. We focus on computation in and control of networked systems, particularly neural circuits and power grids; moreover, the inference of network structures as well as their optimal design constitute basic research questions. We often develop mathematical tools required for understanding these highly complex systems. The Network Dynamics team works on foundations and applications in the areas of computational neuroscience, computer science, statistical physics of disordered systems, artificial neural networks and robotics, and, more recently, gene evolution and power grids and, most recently, complex human interaction networks.
[more]
We deal with the Statistical Physics of Non-Equilibrium Processes and Nonlinear Dynamics. Recent work focuses on far-from-equilibrium phase transitions like the fluidization transition of wet granular matter, the turbulence transition, and the formation of precipitation.

Principles of self-organisation - Jürgen Vollmer

We deal with the Statistical Physics of Non-Equilibrium Processes and Nonlinear Dynamics. Recent work focuses on far-from-equilibrium phase transitions like the fluidization transition of wet granular matter, the turbulence transition, and the formation of precipitation.
[more]
 
Go to Editor View
loading content